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Outline

• Types and properties of games.

• Strategies.

• The basic idea of the MiniMax technique for move evaluation.

• Consideration of some particular games.
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Games vs. search problems

Games have “Unpredictable” opponent.
=⇒ The solution is a contingency plan.

Moves have time limits.
=⇒ Unlikely to find optimal goal, must approximate.

Ideas to beat the problems of AI game playing:

• algorithm for perfect play (Von Neumann, 1944)
• finite horizon, approximate evaluation (Zuse, 1945; Shannon,

1950; Samuel, 1952–57)
• pruning to reduce costs (McCarthy, 1956)
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History

• Computer considers possible lines of play (Babbage, 1846).

• Algorithm for perfect play (Zermelo, 1912; Von Neumann,
1944).

• Finite horizon, approximate evaluation (Zuse, 1945; Wiener,
1948; Shannon, 1950).

• First chess program (Turing, 1951).

• Machine learning to improve evaluation accuracy (Samuel,
1952–57).

• Pruning to allow deeper search (McCarthy, 1956).
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Some Fundamental Types of Game

deterministic chance

perfect
information

Chess
Checkers, Go, Othello

Backgammon

Monopoloy

imperfect
information

Stratego
Bridge

Poker

Scrabble

War
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Other Important Game Properties

Number of players. (Assume we are dealing with 2 player games
unless otherwise stated.)

Time limitations. (Either per move or for the whole game)

Modelling our Adversary.
Can we just consider the game state at each move, or do we need
to consider the other player’s strategy (and hence look at previous
moves in the game).
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AI vs Game Theory Approaches
AI:
From the perspective of AI we tend to look at game playing as an
elaboration the problem of searching a plan that achieves a goal.

Game strategies are contingent plans aimed a achieving a
goal (winning) within the context of a rective and opposing
environment.

This is sometimes called combinatorial game theory.

(Simultaneous) Game Theory:
Game theory typically reduces games to a situation where players
simultaneously choose actions from a set of choices; and each
player gains some reward or pays some penalty depending on
the combination of actions that were chosen by them and by the
other players.
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Game Strategy (in AI Approach)

Informally, a game strategy is simply a way of playing a game.

Mathematically, a game strategy can be modelled by a function
which determines the next move of a player for any state of the
game that might occur when it is that player’s move.

(A strategy is associated with only one player of the game.
It does not determine the moves of other players.)

For computerised game play, we would typically define a strategy
by means of some kind of rule set and/or algorithm.
(Though if there are a sufficiently small number of move states, it
could just be a lookup table.)
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Good Strategies

A strategy for a game does not necessarily have to be a good way
of playing it.

Whether a strategy is good (i.e. likely to lead to a win) may depend
on what strategy is being used by the opponent(s).

Some strategies may be good against certain opposing strategies
but bad against other opposing strategies.

AI — Adversarial Games: Introduction 〈 Contents 〉 AG-1-9



Winning Strategy

A winning strategy for a game is one that will always win the game
whatever moves the opponent(s) play.

For some games, there is a winning strategy that works right from
the beginning.

There could be a winning strategy for the first player or for the
second player.
(There cannot be a winning strategy for both players. Why?)

Rather than having a winning strategy from the beginning a player
may find a winning strategy from a game state that occurs part
way through the game.
From then on, by following this strategy, victory is guaranteed.
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Tic Tac Toe Winning Strategies
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Minimax
Moving to position with highest minimax value gives best
achievable payoff assuming that the opponent always makes their
best play.

E.g., 2-ply game:

Gives perfect play for deterministic, perfect-information games.
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Tic Tac Toe Minimax
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Checkers

The early work on computer game playing by Arthur L. Samuel
introduced and developed several techniques that were key to
progress in this area and have had major influences on the field
of AI in general.
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Techniques used in
Samuel’s Checkers Program

The Samuel Checkers-playing Program appears to be the
world’s first self-learning program, and as such a very early
demonstration of this fundamental concept of AI.

Board state evaluation used a heuristic based on a weighted sum
of numerical feature scores.

Best weightings learned by playing many different versions
against each other.

Move preferences calculated from the heuristics by means of n-
ply look-ahead using minimax with α-β pruning.

Book Learning (storing calculated values of board states) used to
improve efficiency.
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Chess
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Chess Position Evaluation

As with most complex games, it is not possible for a computer to
consider all possible move sequences right up to the end of the
game. Thus it needs to evaluate board states by some heuristic.

Values of Pieces Position of pieces (white Knight)

Pawn 100
Knight 320
Bishop 330
Rook 500
Queen 900
King 20000

-50 -40 -30 -30 -30 -30 -40 -50
-40 -20 0 0 0 0 -20 -40
-30 0 10 15 15 10 0 -30
-30 5 15 20 20 15 5 -30
-30 0 15 20 20 15 0 -30
-30 5 10 15 15 10 5 -30
-40 -20 0 5 5 0 -20 -40
-50 -40 -30 -30 -30 -30 -40 -50

The white Knight position table encodes the heuristic that Knights
are usually strongest near the centre of the board.
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Endgame Problems

Look ahead approaches (such as MiniMax) tend to do badly at
the endgame play of chess.

Endgame strategies can involve quite long sequences of moves
where a player gradually forces their opponent into a losing
position.
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Go

The game of Go, which originated in China more than 2,500 years
ago, has proved extremely challenging problem for computational
game playing.
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Go End Position

The winner is the player who surrounds the most unoccupied
vertices at the end of the game.
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Many Moves and
Increasing Complexity

The large board size (1919, 361) allows many different moves and
prevents deep lookahead.

For the first move in chess, the player has twenty choices. Go
players begin with a choice of 55 distinct legal moves, accounting
for symmetry. This number rises quickly as symmetry is broken
and soon almost all of the 361 points of the board must be
evaluated. Some are much more popular than others, some are
almost never played, but all are possible.

Also, pieces do not disappear, so the game state gets more and
more complicated.
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Why Might Humans be Better

Once placed, go pieces are not moved.

It has been suggested that humans find it easier to think about
development in time that is ‘additive’.

This means that the situation develops by adding more structure,
but the original structure is still present.

This kind of change may be easier for humans to think about.

Why?
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Game Theoretic Approach: eg 1
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Game Theoretic Approach: eg 2
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Basic Idea of MiniMax

We want to find the best move from a given game position, on the
assumption that the opponent will also play their best move.

Need to look at subsequent moves.
(Ideally we would look ahead right to the end of the game,
but this may not be possible).

We can define a recursive procedure for calculating the value of a
move based on the evaluation of subsequent moves.

Since moves alternate between our player and the opponent,
the calculation alternates between taking the maximum and the
minimum of the values calculated for the following state.
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MiniMax Example

Game state evaluation scores for 2-ply look-ahead:

78 2 2 4 1 1 3 5 3 2 1 2 3 16 47 110 1810 2 8 8 1 3

Max

Min

Max

Calculated minimax evaluation:

78 2 2 4 1 1 3 5 3 2 1 2 3 16 47 110 1810 2 8 8 1 3

Max

Min

Max

8 10 4 5 7 8 3
10 16

4 5 3

5
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Tic Tac Toe Minimax
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Minimax Algorithm
function MINIMAX-DECISION(game) returns an operator

for each op in OPERATORS[game] do
VALUE[op]←MINIMAX-VALUE(APPLY(op, game), game)

end
return the op with the highest VALUE[op]

function MINIMAX-VALUE(state, game) returns a utility value

if TERMINAL-TEST[game](state) then
return UTILITY[game](state)

else if MAX is to move in state then
return the highest MINIMAX-VALUE of SUCCESSORS(state)

else
return the lowest MINIMAX-VALUE of SUCCESSORS(state)
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Properties of minimax

Complete ?
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Properties of minimax

Complete ?
Yes, if tree is finite (chess has specific rules to ensure this)

Optimal ?
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Properties of minimax

Complete ?
Yes, if tree is finite (chess has specific rules to ensure this)

Optimal ?
Yes, against an optimal opponent. Otherwise??

Time complexity ?
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Properties of minimax

Complete ?
Yes, if tree is finite (chess has specific rules to ensure this)

Optimal ?
Yes, against an optimal opponent. Otherwise??

Time complexity ? O(bm)

Space complexity ?
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Properties of minimax

Complete ?
Yes, if tree is finite (chess has specific rules to ensure this)

Optimal ?
Yes, against an optimal opponent. Otherwise??

Time complexity ? O(bm)

Space complexity ? O(m) (using depth-first exploration)
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Properties of minimax

Complete ?
Yes, if tree is finite (chess has specific rules to ensure this)

Optimal ?
Yes, against an optimal opponent. Otherwise??

Time complexity ? O(bm)

Space complexity ? O(m) (using depth-first exploration)

For chess, b ≈ 35, m ≈ 100 for “reasonable” games
⇒ exact solution completely infeasible.

(b = branching factor, m = depth.)
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Limited Search

Suppose we have 100 seconds and explore 104 nodes/second
=⇒ 106 nodes per move.

But 354 = 1500625 (> 106).
So can only do around 4 ply look-ahead, which is quite naive play.

Standard approach:

• cutoff test
e.g., depth limit (perhaps add quiescence test)

• evaluation function
Gives estimated desirability of position. (Heuristic)
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Evaluation functions

For chess, typically linear weighted sum of f̆eatures:

Eval(s) = w1f1(s) + w2f2(s) + . . .+ wnfn(s)

e.g., w1 = 9 with
f1(s) = (number of white queens) – (number of black queens)
etc.
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Problem of Cutting Off Search

There is an inherent danger in stopping lookahead at some limited
depth. Something bad may happen shortly after that depth.

This is more likely if the game is in a phase where things are
changing fast (e.g. a multi-piece tradeoff in chess).
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Quiescence

When a game is in a phase of play where the available reasonable
moves only make small differences to the strength of either
players position, the game is said to be quiescent.

The performance of lookahead minimax may be significantly
improved by using some measure of quiescence to vary the depth
of lookahead accordingly.
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Quiescence

When a game is in a phase of play where the available reasonable
moves only make small differences to the strength of either
players position, the game is said to be quiescent.

The performance of lookahead minimax may be significantly
improved by using some measure of quiescence to vary the depth
of lookahead accordingly.

However, the Horizon Problem may cause serious problems for
some kinds of game, and can make quiescence misleading.
The problem arises when there is some bad consequence that
will happen after a long sequence of uneventful moves.

Humans may be better at spotting bad things on the horizon than
are brute force search techniques.
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Some Other Limitations of MiniMax

Does not take account of the fact that the opponent may not play
as expected (may use different evaluations or make mistakes).

With depth limited MiniMax, it is only as good as the game state
evaluation heuristic. This may be a crude measure for the more
subtle games.

Will not perform well when there are many choices that lead to
only slightly different states, that cannot easily be differentiated by
heuristics. (e.g. Slow developing games such as Go.)
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Conclusion

• Minimax is a powerful algorithm that is relatively simple to
implement.

• It achieves perfect play for games that are simple enough for
the algorithm to search right to its possible end states.

• However, for most games of reasonable complexity, resource
limits mean that the depth of search has to be limited.

• Heuristic game state evaluations are used instead of end
states.
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The General Idea

The power of Minimax is limited by the huge size of game tree that
arises for deep lookahead.

Much of this tree is actually redundant because we may know
that a state will never be reached because of choices that could
be made earlier in the game.

α-β pruning systematically eliminates a certain type of
redundancy.

It does not affect the result of the Minimax calculation.
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α-β Pruning

Calculated minimax evaluation:

78 2 2 4 1 1 3 5 3 2 1 2 3 16 47 110 1810 2 8 8 1 3

Max

Min

Max

Reduction of branches to check using α-β pruning:

78 2 2 4 1 1 3 5 3 2 1 2 3 16 47 110 1810 2 8 8 1 3

Max

Min

Max

8 4 5 3

4 5

5

>=10 >=7 >=8

=<3
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α-β Pruning, Step by Step — 1

(Note that in illustrating α-β pruning, we always assume left to
right search of the tree.)
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α-β Pruning, Step by Step — 2

(The effect of α-β pruning will vary depending on the order in
which the choices are searched.)
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α-β Pruning, Step by Step — 3

(It is difficult to tell in advance which ordering of searching move
choices will give the best pruning.)
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α-β Pruning, Step by Step — 4
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α-β Pruning, Step by Step — 5
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A Deeper Example
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α-β Pruning — the general case

If α is better than v, then, when playing according to MiniMax,
state v will never be reached. So there is no point considering
any further continuations from v.
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α-β Pruning Algorithm

function MAX-VALUE(state, game,α,β) returns the minimax
value of state

inputs: state, current state in game
game, game description
α, the best score for MAX along the path to state
β, the best score for MIN along the path to state

if CUTOFF-TEST(state) then return EVAL(state)
for each s in SUCCESSORS(state) do

α←MAX(α, MIN-VALUE(s, game,α,β))
if α ≥ β then return β

end
return α
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...

function MIN-VALUE(state, game,α,β) returns the minimax
value of state

if CUTOFF-TEST(state) then return EVAL(state)
for each s in SUCCESSORS(state) do

β←MIN(β, MAX-VALUE(s, game,α,β))
if β ≤ α then return α

end
return β
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Randomness vs Uncertainty

Although closely related randomness and uncertainty are not the
same thing.

The term ‘randomness’ is usually applied to situations where the
range and frequency of outcomes is known. For instance, when
rolling a standard die, each of the numbers 1–6 occurs with 1/6
probability

Taking into account the randomness of a dice roll is in most cases
easier to model than the uncertainty of not knowing what your
opponent will do in a given situation.
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Uncertainty and Lack of Knowledge

Uncertainty also results from lack of knowledge.

A phenomenon may follow some pattern due to some underlying
constraints or rules, or because of the strategy of an opponent.

If we do not understand why the pattern arises, it will be
unpredictable (it will seem random).

Often uncertainty will involve both uncertainty due to randomness
and uncertainty due to lack of knowledge.

AI — Randomness and Uncertainty (and Pac-Man) 〈 Contents 〉 AG-4-3



Unknown Unknowns
... there are known knowns; there are things we know we know. We also know
there are known unknowns; that is to say we know there are some things we
do not know. But there are also unknown unknowns – the ones we don’t know
we don’t know. And if one looks throughout the history of our country and other
free countries, it is the latter category that tend to be the difficult ones.

(Donald Rumsfeld — US Secretary of Defence, 2001–6).

In the setting of a game, we do not usually have unknown
unknowns. We normally have a set of rules that defines all
possible moves and board states. Even though some facts may
be unknown (e.g. an opponent’s hand of cards), we know what is
possible and can reason about this.

This is one reason why AI approaches to reasoning about games
may be less successful at reasoning about the actual world.
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Dice Roll Probabilities

Many games involve rolling dice to determine some outcome or
possibility.

Skillful play often requires
understanding the relative
liklihood of different
outcomes and combining
this with their value.
The value of position can
often be expressed as a
weighted sum of possible
subsequent outcomes.

Computers can often outperform humans when it comes to
making accurate calculations involving probabilities.
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Minimax with Randomness

Chance events, such as dice rolls, can be represented within a
game tree.

The minimax algorithm
can be extended to
incorporate probability-
weighted sums of the
values of subtrees
below each possible
outcome.

AI — Randomness and Uncertainty (and Pac-Man) 〈 Contents 〉 AG-4-6



Rock, Paper, Scissors

Although rock-paper-scissors (RPS) may seem like a trivial game,
it actually involves the hard computational problem of temporal
pattern recognition.

This problem is fundamental to the fields of machine learning,
artificial intelligence, and data compression. In fact, it might even
be essential to understanding how human intelligence works.

Temporal patterns can be modelled by the use of Markov Models,
which are widely used in AI and can be directly applied to games
such as rock-paper-scissors.

One simple type of Markov Model is the n-gram model, which can
easily be applied to rock-paper-scissors.
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N-Grams for Predicting Sequences

An n-gram is a sequence of n items from some sequence.

The items could be numbers, letters, words or some kind of action
(such as throws in a game of rock-paper-scissors).

An n-gram model is a frequency distribution over a (usually large)
set of example sequences. For every combination 〈x1, . . . , xn〉
of items, the frequency that this occurs in the example set is
recorded.

This information can be used to determine the probability with
which a particular item xn will follow a preceding sequence of n−1
items:

P (xn|x1, . . . , xn−1)
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Pac-Man AI

Pac-Man is a good example of the use of very simple but effective
AI in a computer game.

AI — Randomness and Uncertainty (and Pac-Man) 〈 Contents 〉 AG-4-9



Movement

Each ghost is heading for a specific location (on a tiled grid).

Each of the four ghosts has a different way of picking its target
tile:

• Red Blinky (pursuer) — Pac-Man’s current tile.
• Pinky (speedy/ambusher) — four tiles in front of Pac Man.
• Inky (bashful/whimsical) — the tile equidistant and opposite

to the position of Blinky, relative to the point two tiles in front
of Pac-Man.

• Orange Clyde (pokey/ feigning ignorance) — If > 8 tiles from
Pac-Man, target Pac-Man’s current tile, otherwise head to
bottom left corner (retreat).
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Ghost Navigation

At each intersection, it chooses
the way to go using the heuristic
of smallest Euclidean distance to
goal (calculated from the centre
of each possible exit tile).
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Why Pac-Man Starves
Sometimes looking ahead can result in dallying behaviour, where
a beneficial action is never taken because it would always be
possible to take it later with the same net benefit.

Pac-Man may choose not to move left and eat the energy blip,
since it could always move right and eat the other energy blip on
the following turn. Also moving right leaves more options open.

But reasoning like that will lead to starvation.
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