
A. L. Samuel*

Some Studies in Machine Learning
Using the Game of Checkers. II-Recent Progress

Abstract: A new signature table technique is described together with an improved book learning procedure which is thought to be much
superior to the linear polynomial method described earlier. Full use is made of the so called “alpha-beta” pruning and several forms of
forward pruning to restrict the spread of the move tree and to permit the program to look ahead to a much greater depth than it other-
wise could do. While still unable to outplay checker masters, the program’s playing ability has been greatly improved.

Introduction
Limited progress has been made in the development of an
improved book-learning technique and in the optimization
of playing strategies as applied to the checker playing pro-
gram described in an earlier paper with this same title.’ Be-
cause of the sharpening in our understanding and the sub-
stantial improvements in playing ability that have resulted
from these recent studies, a reporting at this time seems de-
sirable. Unfortunately, the most basic limitation of the
known machine learning techniques, as previously out-
lined, has not yet been overcome nor has the program been
able to outplay the best human checker players?

We will briefly review the earlier work. The reader who
does not find this review adequate might do well to refresh
his memory by referring to the earlier paper.

Two machine learning procedures were described in some
detail: (1) a rote learning procedure in which a record was
kept of the board situation encountered in actual play to-
gether with information as to the results of the machine
analyses of the situation; this record could be referenced
at terminating board situations of each newly initiated tree
search and thus, in effect, allow the machine to look ahead
turther than time would otherwise permit and, (2) a gen-
eralization learning procedure in which the program con-
tinuously re-evaluated the coefficients for the linear poly-
nomial used to evaluate the board positions at the ter-

* Stanford University.
1. “Some Studies in Machine Learning Using the Game of Checkers,” IBM

Journal 3, 211-229 (1959). Reprinted (with minor additions and corrections)
in Computers and Thought, edited by Feigenbaum and Feldman, McGraw-
Hill, 1963.

2. I n a 1965 match with the program, the World Champion, Mr. W. F. Hell-
man, won all four games played by mail but was played to a draw in one bur-
riedly played cross-board game. Recently Mr. K. D. Hanson, the Pacific

occasions.
Coast Champion, has beaten current versions of the program on two separate

minating board situations of a look-ahead tree search. In
both cases, the program applied a mini-max procedure to
back up scores assigned to the terminating situations and so
select the best move, on the assumption that the opponent
would also apply the same selection rules when it was his
turn to play. The rote learning procedure was characterized
by a very slow but continuous learning rate. It was most ef-
fective in the opening and end-game phases of the play. The
generalization learning procedure, by way of contrast,
learned at a more rapid rate but soon approached a plateau
set by limitations as to the adequacy of the man-generated
list of parameters used in the evaluation polynomial. It was
surprisingly good at mid-game play but fared badly in the
opening and end-game phases. Both learning procedures
were used in cross-board play against human players and in
self-play, and in spite of the absence of absolute standards
were able to improve the play, thus demonstrating the use-
fulness of the techniques discussed.

Certain expressions were introduced which we will find
useful. These are: Ply, defined as the number of moves
ahead, where a ply of two consists of one proposed move by
the machine and one anticipated reply by the opponent;
6oardparameter value,* defined as the numerical value as-
sociated with some measured property or parameter of a
board situation. Parameter values, when multiplied by
learned coefficients, become terms in the learning poly-
nomial. The value of the entire polynomial is a score.

The most glaring defects of the program, as earlier dis-
cussed, were (1) the absence of an effective machine proce-
dure for generating new parameters for the evaluation pro-
cedure, (2) the incorrectness of the assumption of linearity

squares to which the player can potentially move. disregarding forced jumps
*Example of a board parameter is MOB (total mobility): the number of

that might be available; Ref. 1 describes many other parameters. 601

IBM JOURNAL * NOVEMBER 1967

which underlies the use of a linear polynomial, (3) the gen-
eral slowness of the learning procedure, (4) the inadequacies
of the heuristic procedures used to prune and to terminate
the tree search, and (5) the absence of any strategy con-
siderations for altering the machine mode of play in the
light of the tactical situations as they develop during play.
While no progress has been made with respect to the first
of these defects, some progress has been made in overcom-
ing the other four limitations, as will now be described.

We will restrict the discussion in this paper to generaliza-
tion learning schemes in which a preassigned list of board
parameters is used. Many attempts have been made to im-
prove this list, to make it both more precise and more in-
clusive. It still remains a man-generated list and it is subject
to all the human failings, both of the programmer, who is
not a very good checker player, and of the checker experts
consulted, who are good players (the best in the world, in
fact) but who, in general, are quite unable to express their
immense knowledge of the game in words, and certainly not
in words understandable to this programmer. At the pres-
ent time, some twenty-seven parameters are in use, selected
from the list given in Ref. 1 with a few additions and modi-
fications, although a somewhat longer list was used for some
of the experiments which will be described.

Two methods of combining evaluations of these param-
eters have been studied in considerable detail. The first, as
earlier described, is the linear polynomial method in which
the values for the individual parameters are multiplied by
coefficients determined through the learning process and
added together to obtain a score. A second, more recent
procedure is to use tabulations called “signature tables” to
express the observed relationship between parameters in
subsets. Values read from the tables for a number of subsets
are then combined for the final evaluation. We will have
more to say on evaluation procedures after a digression on
other matters.

The heuristic search for heuristics
At the risk of some repetition, and of sounding pedantic, it
might be well to say a bit about the problem of immensity
as related to the game of checkers. As pointed out in the
earlier paper, checkers is not deterministic in the practical
sense since there exists no known algorithm which will pre-
dict the best move short of the complete exploration of
every acceptable3 path to the end of the game. Lacking time
for sucha search, we must depend upon heuristic procedures.

Attempts to see how people deal with games such as
checkers or chess4 reveal that the better players engage in
behavior that seems extremely complex, even a bit irra-
tional in that they jump from one aspect to another, with-
out seeming to complete any one line of reasoning. In fact,
from the writer’s limited observation of checker players he
is convinced that the better the player, the more apparent

602 confusion there exists in his approach to the problem, and

A. L. SAMUEL

the more intuitive his reactions seem to be, at least as viewed
by the average person not blessed with a similar proficiency.
We conclude5 that at our present stage of knowledge, the
only practical approach, even with the help of the digital
computer, will be through the development of heuristics
which tend to ape human behavior. Using a computer,
these heuristics will, of course, be weighted in the direction
of placing greater reliance on speed than might be the case
for a human player, but we assume that the complexity of
the human response is dictated by the complexity of the
task to be performed and is, in some way, an indication of
how such problems can best be handled.

We will go a step further and maintain that the task of
making decisions as to the heuristics to be used is also a
a problem which can only be attacked by heuristic proce-
dures, since it is essentially an even more complicated task
than is the playing itself. Furthermore, we will seldom, if
ever, be able to perform a simple test to determine the ef-
fectiveness of any particular heuristic, keeping everything
else the same, as any scientist generally tends to do. There
are simply too many heuristics that should be tested and
there is simply not enough time to embark on such a pro-
gram even if the cost of computer time were no object.
But, more importantly, the heuristics to be tested are not
independent of each other and they affect the other param-
eters which we would like to hold constant. A definitive set
of experiments is virtually impossible of attainment. We are
forced to make compromises, to make complicated changes
in the program, varying many parameters at the same time
and then, on the basis of incomplete tests, somehow con-
clude that our changes are or are not in the right direction.

Playing techniques
While the investigation of the learning procedures forms the
essential core of the experimental work, certain improve-
ments have been made in playing techniques which must
first be described. These improvements are largely con-
cerned with tree searching. They involve schemes to increase
the effectiveness of the alpha-beta pruning, the so-called
“alpha-beta heuristic”6 and a variety of other techniques

sons which relate to the so-called alpha-beta heuristic, as will be described later.
3. The word “acceptable” rather than “possible” is used advisedly for rea-

the Problem of Complexity,” IBMJournd2.320-335 (1958). For references to
4. See for example, Newell, Shaw and Simon, “Chess Playing Programs and

other games, see A. L. Samuel, “Programming a Computer to Play Games,”
in Advances in Computers, F. Alt, Ed., Academic Press, Inc., New York, l96Q.

so conclude
5 . More precisely we adopt the heuristic procedure of assuming that we must

veetigxted by Prof. McCarthy and his students at M.I.T. but it has been in-
6. So named by Prof. John McCarthy. This procedure was extensively in-

adequately described in the literature. It is, of course, not a heuristic at all,
being a simple algorithmic procedure and actually only a special case of the
more general “branch and bound” technique which has been rediscovered many
times and which is currently being exploited in integer programming research.
See A. H. Land and A. G . Doight, “An Automatic Method of Solving Dis-

gramming and Extensions, George Dantzig, Princeton University Press, 1963;
Crete Programming Problems” (1957) reported in bibliography Linear Pro-

M. J. Rossman and R. J. Twery, “Combinatorial Programming,” abstract
K7, Operations Research 6, 634 (1958); John D . Little, Katta P. Murty, Dura
W. Sweeney and Caroline Karel, “An Algorithm for the Traveling Salesman
Problem,” Operations Research, 11, 972-989 (1963).

+2 + 9 + 3 tl - 1 4-6 + 1 + 8 + 3 + 5 + 8 - 1 - 5 0 - 2 - 3 -1

Figure 1 A (look-ahead) move tree in which alpha-beta pruning is fully effective if the tree is explored from left to right. Board positions
for a look-ahead move by the first player are shown by squares, while board positions for the second player are shown by circles. The
branches shown by dashed lines can be left unexplored without in any way influencing the final move choice.

going under the generic name of tree pruning.’ These im-
provements enable the program to analyze further in depth
than it otherwise could do, albeit with the introduction of
certain hazards which will be discussed. Lacking an ideal
board evaluation scheme, tree searching still occupies a cen-
tral role in the checker program.

Alpha-beta pruning
Alpha-beta pruning can be explained simply as a technique
for not exploring those branches of a search tree that the
analysis up to any given point indicates not to be of further
interest either to the player making the analysis (this is ob-
vious) or to his opponent (and it is this that is frequently
overlooked). In effect, there are always two scores, an alpha
value which must be exceeded for a board to be considered
desirable by the side about to play, and a beta value which
must not be exceeded for the move leading to the board to
have h e n made by the opponent. We note that if the board
should not be acceptable to the side about to play, this play-
er will usually be able to deny his opponent the opportunity
of making the move leading to this board, by himself mak-
ing a different earlier move. While people use this technique
more or less instinctively during their look-ahead analyses,
they sometimes do not understand the full implications of
the principle. The saving in the required amount of tree
searching which can be achieved through its use is extreme-
ly large, and as a consequence alpha-beta pruning is an al-
most essential ingredient in any game playing program.
There are no hazards associated with this form of pruning.

in making improvements in the tree pruning techniques. It would be nice if we
7. It is interesting to speculate on the fact that human learning is involved

could assign this learning task to the computer but no practical way of doing
this has yet been devised.

A move tree of the type that results when alpha-beta
pruning is effective is shown in Fig. 1, it being assumed that
the moves are investigated from left to right. Those paths
that are shown in dashed lines need never be considered, as
can be verified by assigning any arbitrary scores to the ter-
minals of the dashed paths and by mini-maxing in the usual
way. Admittedly the example chosen is quite special but it
does illustrate the possible savings that can result. To
realize the maximum saving in computational effort as
shown in this example one must investigate the moves in an
ideal order, this being the order which would result were
each side to always consider its best possible move first. A
great deal of thought and effort has gone into devising tech-
niques which increase the probability that the moves will be
investigated in something approaching this order.

The way in which two limiting values (McCarthy’s alpha
and beta) are used in pruning can be seen by referring to
Fig. 2 , where the tree of Fig. 1 has been redrawn with the
uninvestigated branches deleted. For reasons of symmetry
all boards during the look-ahead are scored as viewed by
the side whose turn it then is to move. This means that
mini-maxing is actually done by changing the sign of a score,
once for each ply on backing up the tree, and then always
maximizing. Furthermore, only one set of values (alpha
values) need be considered. Alpha values are assigned to all
boards in the tree (except for the terminating boards) as
these boards are generated. These values reflect the score
which must be exceeded before the branch leading to this
board will be entered by the player whose turn it is to play.
When the look-ahead is terminated and the terminal board
evaluated (say at board e in Fig. 2) then the value which cur-
rently is assigned the board two levels up the tree (in this 603

MACHINE LEARNING: PT. I1

Figure 2 The move tree of Fig. 1 redrawn to illustrate the detailed method used to keep track of the comparison values. Board positions
are lettered in the order that they are investigated and the numbers are the successive alpha values that are assigned to the boards as the
investigation proceeds.

case at board c) is used as the alpha value, and unless the
terminal board score exceeds this alpha value, the player at
board c would be ill advised to consider entering the branch
leading to this terminal board. Similarly if the negative
of the terminal board score does not exceed the alpha
value associated with the board immediately above in the
tree (in this case at board 6) then the player at bourd d will
not consider this to be a desirable move. An alternate way
of stating this second condition, in keeping with Mc-
Carthy’s usage, is to say that the negative of the alpha value
associated with the board one level up the tree (in this case
board 6) is the beta value which must not be exceeded by
the score associated with the board in question (in this case
board e). A single set of alpha values assigned to the boards
in the tree thus performs a dual role, that of McCarthy’s
alpha as referenced by boards two levels down in the tree
and, when negated, that of McCarthy’s beta as referenced
by boards one level down in the tree.

Returning to the analysis of Fig. 2 , we note that during
the initial look-ahead (leading to boarde) nothing is known
as to the value of the boards, consequently the assigned al-
pha values are all set at minus infinity (actually within the
computer only at a very large negative number). When
board e is evaluated, its score (4-2) is compared with the
alpha at c (- w), and found to be larger. The negative of
the score (- 2) is then compared with the alpha at d (- 00)
and, being larger, it is used to replace it. The alpha at d is
now - 2 and it is unaffected by the subsequent considera-
tion of terminal boardsfand g. When all paths from board
d have been considered, the final alpha value at d is com-

604 pared with the current alpha value at board b (- 00); it is

larger, so the negative of alpha at d (now + 2) is compared
with the current alpha value at c (- m) and, being larger,
it is used to replace the c value, and a new move from
board c is investigated leading to board h and then board i.
As we go down the tree we must assign an alpha value to
board h. We cannot use the alpha value at board c since
we are now interested in the minimum that the other side
will accept. We can however advance the alpha value from
board b, which in this case is still at its initial value of
- a. Now when board i is evaluated at +1 this value is
compared with the alpha at board c (4-2). The comparison
being unfavorable, it is quite unnecessary to consider any
other moves originating at board h and we go immediately
to a consideration of boards j and k, where a similar situa-
tion exists. This process is simply repeated throughout the
tree. On going forward the alpha values are advanced each
time from two levels above and, on backing up, two com-
parisons are always made. When the tree is completely ex-
plored, the final alpha value on the initial board is the
score, and the correct move is along the path from which
this alpha was derived.

The saving that results from alpha-beta pruning can be
expressed either as a reduction in the apparent amount of
branching at each node or as an increase in the maximum
ply to which the search may be extended in a fixed time in-
terval. With optimum ordering, the apparent branching
factor is reduced very nearly to the square root of its
original value or, to put it another way, for a given invest-
ment in computer time, the maximum ply is very nearly
doubled. With moderately complex trees the savings can be
astronomical. For example consider a situation with a

A. L. SAMUEL

c
branching factor of 8. With ideal alpha-beta pruning this
factor is reduced to approximately 2.83. If time permits the
evaluation of 66,000 boards (about 5 minutes for checkers),
one can look ahead approximately 10 ply with alpha-beta
pruning. Without alpha-beta this depth would require the
evaluation of 81° or approximately lo9 board positions and
would require over 1,000 hours of computation! Such sav-
ings are of course dependent upon perfect ordering of the
moves. Actual savings are not as great but alpha-beta prun-
ing can easily reduce the work by factors of a thousand or
more in real game situations.

Some improvement results from the use of alpha-beta
pruning even without any attempt to optimize the search
order. However, the number of branches which are pruned
is then highly variable depending upon the accidental or-
dering of the moves. The problem is further complicated in
the case of checkers because of the variable nature of the
branching. Using alpha-beta alone the apparent branching
factor is reduced from something in the vicinity of 6 (re-
duced from the value of 8 used above because of forced
jump moves) to about 4, and with the best selection of or-
dering practiced to date, the apparent branching is reduced
to 2.6. This leads to a very substantial increase in the depth
to which the search can be carried.

Although the principal use of the alpha and beta values
is to prune useless branches from the move tree, one can
also avoid a certain amount of inconsequential work when-
ever the difference between the current alpha value and the
current beta value becomes small. This means that the two
sides have nearly agreed as to the optimum score and that
little advantage to either one side or the other can be found
by further exploration along the paths under investigation.
It is therefore possible to back-up along the tree until a part
of the tree is found at which this alpha-beta margin is no
longer small. Not finding such a situation one may terminate
the search. The added savings achieved in this way, while
not as spectacular as the savings from the initial use of
alpha-beta, are quite significant, frequently reducing the
work by an additional factor of two or more.

Plausibility analysis
In order for the alpha-beta pruning to be truly effective, it is
necessary, as already mentioned, to introduce some tech-
nique for increasing the probability that the better paths are
explored first. Several ways of doing this have been tried.
By far the most useful seems to be to conduct a preliminary
plausibility survey for any given board situation by looking
ahead a fixed amount, and then to list the available moves
in their apparent order of goodness on the basis of this in-
formation and to specify this as the order to be followed in
the subsequent analysis. A compromise is required as to the
depth to which this plausibility survey is to be conducted;
too short a look-ahead renders it of doubtful value, while
too long a look-ahead takes so much time that the depth of

the final analysis must be curtailed. There is also a question
as to whether or not this plausibility analysis should be ap-
plied at all ply levels during the main look-ahead or only for
the first few levels. At one time the program used a plausi-
bility survey for only the first two ply levels of the main
look-ahead with the plausibility analysis itself being carried
to a minimum ply of 2. More recently the plausibility analy-
sis has been applied at all stages during the main look-ahead
and it has been carried to a minimum ply of 3 during certain
portions of the look-ahead and under certain conditions, as
will be explained later.

We pause to note that the alpha-beta pruning as described
might be called a backward pruning technique in that it
enables branches to be pruned at that time when the pro-
gram is ready to back up and is making mini-max compari-
sons. It assumes that the analyses of all branches are other-
wise carried to a fixed ply and that all board evaluations are
made at this fixed ply level. As mentioned earlier, the rig-
orous application of alpha-beta technique introduces no
opportunities for erroneous pruning. The results in terms of
the final moves chosen are always exactly as they would
have been without the pruning. To this extent the procedure
is not a heuristic although the plausibility analysis tech-
nique which makes it effective is certainly a heuristic.

While the simple use of the plausibility analysis has been
found to be quite effective in increasing the amount of
alpha-beta pruning, it suffers from two defects. In the first
place the actual amount of pruning varies greatly from move
to move, depending upon random variations in the average
correctness of the plausibility predictions. Secondly, within
even the best move trees a wrong prediction at any one point
in the search tree causes the program to follow a less than
optimum path, even when it should have been possible to
detect the fact that a poor prediction had been made before
doing an excessive amount of useless work.

A multiple-path enhanced-plausibility procedure
In studying procedures used by the better checker players
one is struck with the fact that evaluations are being made
continuously at all levels of look-ahead. Sometimes un-
promising lines of play are discarded completely after only
a cursory examination. More often less promising lines are
put aside briefly and several competing lines of play may be
under study simultaneously with attention switching from
one to another as the relative goodness of the lines of play
appears to change with increasing depth of the tree search.
This action is undoubtedly prompted by a desire to improve
the alpha-beta pruning effectiveness, although I have yet to
find a checker master who explains it in these terms. We are
well advised to copy this behavior.

Fortunately, the plausibility analysis provides the neces-
sary information for making the desired comparisons at a
fairly modest increase in data storage requirements and
with a relatively small amount of reprogramming of the 605

MACHINE LEARNING: PT. I1

606

tree search. The procedure used is as follows. At the begin-
ning of each move, all possible moves are considered and a
plausibility search is made for the opponent’s replies to each
of these plays. These moves are sorted in their apparent
order of goodness. Each branch is then carried to a ply of
3; that is, making the machine’s first move, the opponent’s
first reply and the machine’s counter move. In each case
the moves made are based on a plausibility analysis which is
also carried to a minimum depth of 3 ply. The path yielding
the highest score to the machine at this level is then chosen
for investigation and followed forward for two moves only
(that is, making the opponent’s indicated best reply and the
machine’s best counter reply, always based on a plausibility
analysis). At this point the score found for this path is com-
pared with the score for the second best path as saved ear-
lier. If the path under investigation is now found to be less
good than an alternate path, it is stored and the alternative
path is picked up and is extended in depth by two moves, A
new comparison is made and the process is repeated. Al-
ternately, if the original path under investigation is still
found to be the best it is continued for two more moves. The
analysis continues in this way until a limiting depth as set by
other considerations has been reached. At this point the
flitting from path to path is discontinued and the normal
mini-maxing procedure is instituted. Hopefully, however,
the probability of having found the optimum path has been
increased by this procedure and the alpha-beta pruning
should work with greater effectiveness. The net effect of all
of this is to increase the amount of alpha-beta pruning, to
decrease the playing time, and to decrease the spread in
playing time from move to move.

This enhanced plausibility analysis does not in any way
affect the hazard-free nature of the alpha-beta pruning.
The plausibility scores used during the look-ahead proce-
dure are used only to determine the order of the analyses
and they are all replaced by properly mini-maxed scores as
the analysis proceeds.

One minor point may require explanation. In order for all
of the saved scores to be directly comparable, they are all
related to the same side (actually to the machine’s side) and
as described they are compared only when it is the oppo-
nent’s turn to move; that is, comparisons are made only on
every alternate play. It would, in principle, be possible to
make comparisons after every move but little is gained by
so doing and serious complications arise which are thought
to offset any possible advantage.

A move tree as recorded by the computer during actual
play is shown in Fig. 3. This is simply a listing of the moves,
in the order in which they were considered, but arranged on
the page to reveal the tree structure. Asterisks are used to
indicate alternate moves at branch points and the principal
branches are identified by serial numbers. In the interest of
clarity, the moves made during each individual plausibility
search are not shown, but one such search was associated

to be explained, the flitting from path to path is clearly
visible at the start. In this case there were 9 possible initial
moves which were surveyed at the start and listed in the
initially expected best order as identified by the serial num-
bers. Each of these branches was carried to a depth of 3 ply
and the apparent best branch was then found to be the one
identified by serial number 9, as may be verified by reference
to the scores at the far right (which are expressed in terms
of the side which made the last recorded move on the line in
question). Branch 9 was then investigated for four more
moves, only to be put aside for an investigation of the
branch identified by the serial number 1 which in turn was
displaced by 9, then finally back to 1. At this point the nor-
mal mini-maxing was initiated. The amount of flitting from
move to move is, of course, critically dependent upon the
exact board configuration being studied. A fairly simple
situation is portrayed by this illustration. It will be noted
that on the completion of the investigation of branch 1, the
program went back to branch 9, then to branch 3, followed
by branch 2, and so on until all branches were investigated.
As a matter of general interest this tree is for the fifth move
of a game following a 9-14,22-17, 11-15 opening, after an
opponent’s move of 17-13, and move 15-19 (branch 1) was
finally chosen. The 7094 computer took 1 minute and 3 sec-
onds to make the move and to record the tree. This game
was one of a set of 4 games being played simultaneously
by the machine and the length of the tree search had been
arbitrarily reduced to speed up the play. The alpha and beta
values listed in the columns to the right are both expressed
in terms of the side making the last move, and hence a score
to be considered must be larger than alpha and smaller than
beta. For clarity of presentation deletions have been made
of most large negative values when they should appear in
the alpha column and of most large positive values when
such values should appear in the beta column.

Forward pruning
In addition to the hazardless alpha-beta pruning, as just
described, there exist several forms of forward pruning
which can be used to reduce the size of the search tree.
There is always a risk associated with forward pruning since
there can be no absolute assurance that the scores that
would be obtained by a deeper analysis might not be quite
different from those computed at the earlier ply. Indeed if
this were not so, there would never be any reasons for look-
ing ahead. Still it seems reasonable to assume that some net
improvement should result from the judicious use of these
procedures. Two simple forms of forward pruning were
found to be useful after a variety of more complicated pro-
cedures, based on an initial imperfect understanding of the
problem, had been tried with great effort and little success.

Figure 3 An actual look-ahead move tree as printed by the computer during play.

MOVE TREE
15 19.23-16.12-19 1
7 11.25-22. 5- 9 2
8 11.25-221 4- 8 J

15 18.25-22.18-25 4
14 17.21-14.10-17 5
12 16.24-19.15-24 6
6 9.13- 6, 2- 9 7

5 9.24-19.15-24 Y

ALPHA BETA SCORE
00014

-00030
-00016
-00032
-00036
-06404
-00037
-00044
0002L

00013

OUOlO

O O O l U

*12-16 00034
00034
0 002 I

*27-24 -00034 -00045
00034 00024

-00034 -00105

0003+ 00045
b003+ 00036
00034 00036

r24-15,10-19,23-16.12-19~2623.1~26.30-23. 8-12125-22 -00034 -00034
00034 00033

831-22, 7-10.30-26
t27-24 -00034 -00045

*27-23
-00034 -00105
-00034 -00105

*26-22. 7-10 00034 00045
+27-24. 7-10124-15~10-19 00034 00033

-00034-00010
00034 -00000

00034 -00016
-00034-00007
-(I0034 00001
-00034 00004

00034 -00032

O W 3 4 00024
*IO-15 OC034 -17341

-00034 00005
00034 -00041

t 3- a,~2-17,15-19.~4-15,11-1n,28-24 -00034 00031
-00034 16023

00034 -00037
U0034 -00105
00034 -00105

8 1 4 - 1 7 . 2 1 - 1 4 , 1 0 - 1 7 1 Z ~ l S ~ 1 5 - 2 4 r 2 8 - 1 9 -00034 00031
S 6- 9.13- 6 , 2- 9-29-25 -*u034 00032

00034 -00030
00034 -00034

-00034 00023

14 18.23-14.10-IT n

9 28-19. 8-11125-22.11-15

1 24-15v10-19.2623.19-26

9 22-18.15-24

1 30-23. 8-12.25-L2,14-18 *I

t 5- 9
*31-22. 7-10.30-26

826-2Z1 7-10.27-23.19-26
*30-26, 3- 7
*31-26+ 3- 7

*27-24. 7-10.24-15.10-19

az7-23 -00034 -00105

9 27-20
*15-22 * 4- 8 00034 -00036

8 7-1l119-15.11-l~rL1-17
511-16

*10-19,23- 7
810-15119-IC. 6-15.13- 6 * 1- 5

3 2 2 - 1 8 . 1 5 - Z Z ~ 2 6 - 1 7 v l l - 1 6 ~ 3 0 - 2 6 ~ 8-11

* 5- 9.24-20
r14-18

810-19117- 3
8 5- 9
8 6- 9
814-18

2 22-17r15-1812622v18-25.29-22.11-15
*lZ-16 * 2- 1,24-25

8 3- 7 00034 -0U037

8 3- 71L2-17.15-19.2r15r11-1BrZ&Z*
*1C-19v17- 3

* l l - 1 6 00034 -00030
-00034 00031
-00034 16023

00034 -00105
00034 -00105
00034 4J0045

00034 -00045
-00034 00012

*17-21 00034 -00030
-00034 O O L O O

00034 -00007
00034 -00032
00034 -00036

00034 -00030
-00034ii0007

00034 -00017
00034 -0 7432

-00034 00031

t 5- 9 00034 -00037

814-1s
I 6- 9

8 2- 7rZC-19.15-2*rZ8-19.1*-17

*11-1b
* 5- v 00034 - 0 O U 4 5

*ll-l6.24-19

4 29-22.1C17~21-14.I0-17~22-ltl. 6- 9113- 6

8 5- 9.24-19. 8-11
I 1- 5
* 7-11

8 8 - l I . 2 3 - I E
7-11

5 24-19.15-24.28-191 5- 9.25-211 9-14
*17-22

* 8-11.25-22 * 7-10 00034 -00055

* 9-14 00034 -00025
7 2 3 - 1 8 . 1 5 - 2 ~ . 2 ~ 1 8 . 1 ' 1 - ~ 3 1 2 b - 1 4 . 8-11.29-25 -00034 00030

00034 -I 5617
00034 -15620

00034 -LL205
-00034 11614

* 2- 6 00034 -00105
-00034 10416

*12-L6
-00034 10436

00034 -10370
8 8-11,24-lS115-24128-19, 6- 9 OCUJ4 -00056

* 4- 8
*l5-18,2622

00034 -00063
-00034 06541

7-10 OC034 -07410

-00034 06404
811-15 00034 -07355

00034 -06446
*ll-15 00034 -37353

-00034 0 6422
00034 -07364

pLy 3 4 5 6 7 8 9 10 11 12 13 14 1 5 16 17 18 19 2 0 21 1 2 T O T A L

USAGE 11 16 I6 37 29 40 32 34 14 2 0 0 0 0 0 0 0 0 0 0 231
ENDS 0 8 1 1 2 5 1 2 1 1 2 4 1 3 2 0 0 0 0 0 0 0 0 0 0 8 8
2. 15 19 000342 1 1 1 9 2 9 b Z l 16 15-19 7-11 8-11 15-16 2

814-23,27- 2.10-14r24-20. 8-11
8 9-13

*10-15r24-19
t 3- 7

8 21-14. 6- 9.13- t. 1-17r25-21~17-22~2b-17

* 2-18.26-23, 8-11123-14

6 28-12. 8-11123-18.14-23127-18, 5- 9911-17

7-11.23-18.14-23.27-1a. 5- 9

8 5- 9.23-18
* t i 9

607

MACHINE LEARNING: PT. 11

To apply the first form it is only necessary to limit the
number of moves saved for future analysis at each point in
the tree, with provisions for saving all moves when the ply
is small and gradually restricting the number saved, as the
ply becomes greater until finally when the maximum feasi-
ble ply is being approached only two or three moves are
saved. (The decision as to which are saved is, of course,
based on the plausibility analysis.) *

In the second form of forward pruning one compares the
apparent scores as measured by the plausibility analysis
with the current values of alpha and beta that are being
carried forward, and terminates the look-ahead if this com-
parison is unfavorable. Rather than to apply this compari-
son in an unvarying way it seems reasonable to set margins
which vary with the ply so that the amount of pruning in-
creases with increasing ply. At low plies only the most un-
likely paths can then be pruned, while fairly severe pruning
can be caused to occur as the effective ply limit is ap-
proached. If the margins are set too high, then only negligi-
ble pruning will result, while if they are low or nonexistent,
the pruning will be extreme and the risks of unwise pruning
correspondingly large.

There are, then, several factors which may be experimen-
tally studied, these being the magnitudes of the several forms
of pruning and the way in which these magnitudes are
caused to vary with the ply. The problem is even more com-
plicated than it might at first appear since the various kinds
of forward pruning are not independent. It seems reason-
able to assume that the rate at which the margins are re-
duced in the last described form of forward pruning and the
rate at which the number pruning is increased in the earlier
described form should both depend upon the position in the
plausibility listings of earlier boards along the branch under
investigation. It is quite impractical to make a detailed
study of these interdependencies because the range of pos-
sible combinations is extremely large and a whole series of
games would have to be played for each combination before
valid conclusions could be drawn. Only a very few arrange-
ments have, in fact, been tried and the final scheme adopted
is based more on the apparent reasonableness of the ar-
rangement than upon any real data.

The problem o j “pitch” moves
In both of the above forms of forward pruning serious dif-
ficulties arise with respect to the proper consideration of so
called “pitch moves,” that is, of moves in which a piece is
sacrificed in return for a positional advantage which eventu-
ally leads at least to an equalizing capture if not to an ac-
tual winning position. In principle, one should be able to as-
sign the proper relative weights to positional and material
advantages so as to assess such moves correctly, but these
situations generally appear to be so detail-specific that it is
impossible to evaluate them directly in any way other than

608 by look-ahead. Troubles are encountered because of the

A. L. SAMUEL

limited look-ahead distance to which the plausibility
analysis can be extended; the equalizing moves may not be
found and as a consequence a good pitch move may be
pruned. A two-ply plausibility search in which the analysis is
terminated only on a non-jump situation will correctly
evaluate move sequences of the type P, J, J, where P stands
for pitch and J for jump (with N used later for non-jump
moves which are not forcing) but it is powerless to evaluate
sequences of the P, J, P, J, J type or of the P, J, N, P, J type.
Both of these occur quite frequently in normal play. A
three-ply search will handle the first of these situations but
will still not handle the second case. Unsatisfactory as it is,
the best practical compromise which has been achieved to
date seems to be to employ a two-ply plausibility search for
the normal non-pitch situation and to extend the search to
three-ply whenever the first or the second move of the
plausibility search is a jump. As noted earlier a three-ply
search is customarily employed during the preliminary
multi-path phase of the analysis.

Several more complicated methods of handling this prob-
lem have been considered, but all of the methods tried to
date have proved to be very expensive in terms of computing
time and all have been discarded. One of these methods
which seemed to be marginally effective consisted of a pro-
cedure for keeping a separate account of all pitch moves en-
countered during the plausibility search, defined in this case
as sequences in which the first move in the search is not a
jump and the second move is a jump. These pitch moves
were sorted on the basis of their relative scores and a record
was kept of the four best pitch moves. Of course some of
these moves might have been also rated as good moves
quite independently of their pitch status, either because
most or all of the available moves were of this type or be-
cause the return capture was not delayed beyond the ply
depth of the search. After the normal number of unpruned
moves at any branch point had been explored, the best re-
maining pitch move (eliminating any already considered)
was then followed up. Since most of the apparent pitch
moves may in fact be sheer giveaway moves, it was quite
impractical to consider more than a single pitch move but
hopefully that apparent pitch which led to the highest posi-
tional score should have been the most likely move to in-
vestigate. This procedure causes a two-ply plausibility
search to salvage one likely candidate per move which
could be of the P, J, N, J, J, type and it increases the power
of the three-ply plausibility search correspondingly. Un-
fortunately a rather high percentage of the additional moves
so considered were found to be of no value and the book-
keeping costs of this procedure also seemed to be excessive.

As a further extension of this general method of handling
pitch moves, it is possible to cause pitch sequences of the
P, J, N, P, J type to be investigated using a two-ply plausi-
bility search. One need only specify that the main tree not
be terminated when there is a jump move pending. While

the cost of this addition might seem to be small, in practice
it leads to the exploration in depth of extended giveaway
sequences, and as a consequence it is of very questionable
value.

Look-ahead termination
Regardless of the form or amount of forward pruning the
time arrives along each path when it is necessary to termi-
nate the look-ahead and evaluate the last board position.
It is rather instructive to consider the termination as simply
the end of the pruning process in which the pruning is com-
plete. The use of a fixed depth for this final act of pruning,
as previously assumed, is of course not at all reasonable and
in fact it has never been used. In the earlier work1 much at-
tention was given to the wisdom of terminating the look-
ahead at so called "dead" positions. With the current use
made of the plausibility analysis this becomes a restriction
mainly applicable to the plausibility analysis and it is of but
little value in terminating the main tree itself. A limit is, of
course, set by the amount of storage assigned for the tree
but since the tree storage requirements are not excessive this
should normally not be allowed to operate. If the plausibili-
ty analysis is at all effective one should be able to ration the
computing time to various branches on the basis of their
relative probability of being the best. For example, the ini-
tial path which survives the swapping routine during the
initial look-ahead procedure should certainly be carried
quite far along as compared with a path resulting from in-
vestigating, say, the fourth choice as found by the plausi-
bility, when this is again followed by a fourth choice, etc.,
all the way through the tree.

The procedure found most effective has been that of de-
fining a parameter called the branching count which is as-
signed a value for each board encountered during the tree
search. To insure that all of the possible initial moves are
given adequate consideration, identical values are given to
the counts for the resulting boards after these initial moves.
As each move originating with one of these boards is made,
the branching count for the originating board is reduced by
one unit and the resulting board after the move is assigned
this new value as well. This process is repeated at each
branch point down the tree until the branching count
reaches zero, whereupon the search down this path is ter-
minated (more correctly steps are taken to initiate termina-
tion unless other factors call for a further extension of the
search, as will be explained later). Along the preferred
branch, the branching count will thus be reduced by one
unit for each ply level. For the second choice at any branch
point a two-unit reduction occurs, for the third choice a
three-unit, etc. The net result is that the less likely paths are
terminated sooner than the most likely paths and in direct
proportion to their decreasing likelihood.

Actually, a slightly more complicated procedure is used
in that the branching count is set at a higher initial value

and it is reduced by one unit when the move under consider-
ation is a jump move and by four units when it is a normal
move. This procedure causes the search to be extended fur-
ther along those paths involving piece exchanges than along
those that do not. Also the search is not permitted to termi-
nate automatically when the branching count reaches zero
if the indicated score for the move under consideration im-
plies that this is in fact a preferred path. In this case the
search is extended until the same depth has been reached
along this path as had been reached along the previously
indicated preferred path.

Tree pruning results
It has been found singularly diacult to assess the relative
value of the various tree pruning techniques in terms of
their effect on the goodness of play. Special situations can
always be found for which the various forward pruning
procedures are either very effective or quite inadequate.
Short of very extensive tests indeed, there seems to be no
very good way to determine the relative ferquency with
which these different situations occur during normal play.
About all that has been done has been to observe the result-
ing game trees and to depend upon the opinions of checker
masters as to the goodness of the resulting moves and as to
the reasonableness in appearance of the trees.

As mentioned earlier, for each move that is tabulated in
Fig. 3 there was actually an auxiliary plausibility move
analysis to a ply of 2 or more which is not shown at all for
reasons of clarity. One can think of this as a fine brush of
moves emanating from each recorded move. Examples of all
types of pruning can be noted in this tree, although addi-
tional information is needed for their unambiguous identi-
fication. Checker experts all agree that such trees as these
are much denser than they probably should be. Attempts to
make them less dense by stronger pruning always seem to
result in occasional examples of conspicuously poor play.
It may well be that denser trees should be used for machine
play than for human play, to compensate for deficiencies in
the board evaluation methods.

Evaluation procedures and learning
Having covered the major improvements in playing tech-
niques as they relate to tree searching, we can now consider
improvements in evaluation procedures, with particular
reference to learning. We will first discuss the older linear
polynomial scheme and then go on to consider the signa-
ture-table procedure.

Linear polynomial evaluations
While it is possible to allow for parameter interaction, for
example, by using binary connective terms as described in
Ref. 1 the number of such interactions is large, and it seems
necessary to consider more than pair-wise interactions. This
makes it quite difficult to depart very much from the linear 609

MACHINE LEARNING: PT. I1

case. Some improvement in performance resulted when the
overall game was split, initially, into 3 phases (opening,
mid-game, and end-game) and more recently into 6 phases
with a different set of coefficients determined for each phase.
Various procedures for defining the phase of the game were
tested, the simple one of making the determination solely in
terms of the total number of pieces on the board seemed as
good as any tried, and there were indications that little
was to be gained by going to more than 6 phases.

The total number of parameters used at any one time has
been varied from a very few to as many as 40. It has been
customary to use all of the currently assessed successful
parameters during the learning phase. A number of attempts
have been made to speed up actual play by limiting the num-
ber of parameters to 5 , 10, 15, or 20, selecting those with
the larger magnitude coefficients. Five terms in the learn-
ing polynomial proved definitely inadequate, an improve-
ment in going from 10 to 15 terms appeared to be barely
discernible, and no evidence could be found for improve-
ments in using more than 20 terms. In fact, there seemed
to be some indication that a fortuitous combination of
many ineffectual parameters with correspondingly low
coefficients could, on occasion, override a more effective
term and cause the program to play less well than it would
with the ineffectual parameters omitted. In a series of 6
games played against R. W. Nealey (the U. S. blind check-
er champion) using 15 terms, the machine achieved 5
draws with one loss. The six poorest moves in these games
as selected by L. W. Taylor, a checker analyst, were re-
played, using 20 terms with no improvements and then
using only 10 terms with a distinct improvement in two
cases. There is, of course, no reason to believe that the
program with the fewer number of terms might not have
made other and more grievous errors for other untested
board situations. Twenty terms were used during the games
with W. F. Hellman referenced in footnote 2. No further
work has been done on the linear polynomial schema in
view of the demonstrated superiority of the “signature-
table” procedure which will now be described.

Signature-table evaluations
The impracticality of considering all inter-parameter ef-
fects and the obvious importance of such interactions has
led to the consideration of a number of different compro-
mise proposals. The first successful compromise solution
was proposed and tested on the Project Mac computer by
Arnold Criffith, a graduate student at M.I.T. In one early
modification of this scheme, 8 subsets of 5 parameters each
were used, initially selected from 31 different parameters
with some redundancy between subsets. Each subset was
designated as a signature type and was characterized by an
argument computed in terms of the values measured for the
parameters within the subset for any particular board situa-

61 0 tion. The arguments for each signature type thus specify

A. L. SAMUEL

particular combinations of the parameters within the sub-
set and serve as addresses for entering signature tables where
the tabulated values are meant to reflect the relative worth
to the computer’s side of these particular combinations. In
the initial Griffith scheme the values read from the 8 differ-
ent signature tables were simply added together to obtain
the final board evaluation. Parameters which are thought
to be somehow related were grouped together in the indi-
vidual subsets. While it would have been desirable to con-
sider all possible values for each parameter and all possible
interrelations between them, this quickly becomes un-
manageable. Accordingly, the range of parameter values
was restricted to but three values + 1, 0, and - 1 ; that is,
the two sides could be equal or one or the other could be
ahead in terms of the board property in question. Many of
the board properties were already of this type. With each
parameter limited to 3 values and with 5 parameters in a
subset, a total of 36 or 243 entries in a signature table com-
pletely characterizes all possible interactions between the
parameters. Actually since checkers is a “zero sum” game
and since all parameters are defined symmetrically, it should
be possible to reduce the table size roughly by two (122
entries instead of 243) by listing values for positive argu-
ments only and taking values with a reversal of sign when
negative arguments are evaluated. Allowing for 48 signa-
ture tables, 8 signature types for each of the 6 different
phases, we arrive at a memory space requirement for 5856
table entries. Actually two words per table entry are used
during the learning phase, as explained later, so the total
memory requirement for the learning data is 11,712 words.

An example will make this procedure clear. Consider one
signature type which might comprise the following 5 param-
eters: ANGLE, CENTER, OREO, GUARD and KCENT, which will
not be explained now but which all have to do with the con-
trol of the king row and the center of the board. Now con-
sider the GUARD parameter. This can be assigned a value of
0 if both or neither of the sides have complete control of
their back rows, a value of +1 if the side in question con-
trols his back row while the opponent does not, and a value
of - 1 if the conditions are reversed. The other 4 parameters
can be similarly valued, giving a ternary number consisting
of a 5-digit string selected from the set - , 0, and +, (where
- is used for - 1, etc.), e.g., “+ - 0 - -” characterizes
one particular combination of these five different parame-
ters. This argument can be associated with some function
value, a large positive value if it is a desirable combination,
a near zero function value if the advantages to the two sides
are about even, and a large negative value if it is a disadvan-
tageous combination. Both the arguments and functions
are symmetric; that is, the argument and function for the
other side would be that gotten by reversing all signs. (In the
- , 0, + ternary system the first symbol in the list gives the
sign and the processes of complementing and sign reversal
are synonymous.) The argument for the other side would

Allowable First
range of level Range of values tables values

7
5
3

7-
5 -
3-

‘05 5 125
Entries Entries

7-
5-
3- Entries

105

7-

3-

1 table

- 105
Entries

7-

3 -
- 105 - , 125 Final score

Entrie5 Entries
7 343

Entries D

7
5 7

I Figure 4 A 3-level signature-table arrangement with 27 terms.

thus be - + 0 + +, a negative number which would not
be tabulated but the function value would be the negative
of the value listed under + - 0 - - , as it of course must
be for the sum of the functions for the two sides to be zero.

The results obtained with this relatively simple method
of handling parameter interactions were quite encouraging
and as a result a series of more elaborate studies has been
made using signature procedures of varying degrees of com-
plexity. In particular, efforts were made (1) to decrease the
total number of parameters by eliminating those found to
be of marginal utility, (2) to increase the range of values per-
mitted for each parameter, initially increasing the range for
certain parameters to permit 7 values (- 3 , - 2 , - 1, 0,
+ 1 , +2, +3) and more recently dividing the parameters
into two equal groups-one group being restricted in range
to 5 values, and (3) to introduce a hierarchical structure of
signature tables where the outputs from the first level signa-
ture tables are combined in groups and used as inputs to a
set of second level tables etc. (This is illustrated in a simpli-
fied form in the cover design of this issue.)

Most of the experimental work has been restricted to a
consideration of the two arrangements shown in Figs. 4 and
5. These are both three-level arrangements. They differ in
the degree of the correlation between parameters which is

Range of level
First

values tables

values

Entries

5-
3” 68 5
3 - Entries Entries
3-

125

5-
3- 6 5 - Entries
3-

3” 68 5
3 - Entries
3-

125 Range of
Entries

5-
3- 6 5 - Entries
3-

225

Range of
values

Third
level
table

\r 225

5
3
3
3

5

3
3

3

5
3
3
3

Figure 5 Revised 3-level signature-table scheme with 24 terms.

recognized and in the range of values permitted the indi-
vidual parameters. Both are compromises.

Obviously, the optimum arrangement depends upon the
actual number of parameters that must be used, the degree
to which these parameters are interrelated and the extent
to which these individual parameters can be safely repre-
sented by a limited range of integers. In the case of checkers,
the desired number of parameters seems to lie in the range
of 20 to 30. Constraints on the range of values required to
define the parameters can be easily determined but sub-
stantially nothing is known concerning the interdependen-
cies between the parameters. A series of quite inconclusive
experiments was performed in an effort to measure these
interdependencies. About all that can be said is that the con-
straints imposed upon the permissible distribution of pieces
on the board in any actual game, as set by the rules of the
game and as dictated by good playing procedures, seem to
produce an apparent average correlation between all param-
eters which is quite independent of the specific character of
these parameters. The problem is further complicated by
the fact that two quite opposing lines of argument can be
advanced-the one to suggest that closely related terms be
placed in the same subsets to allow for their interdependen-
cies and the second to suggest that such terms be scattered 61 1

MACHINE LEARNING: PT. 11

among groups. The second suggestion can be made to look
reasonable by considering the situation in which two param-
eters are unknowingly so closely related as to actually meas-
ure the same property. Placing these two terms in the same
subset would accomplish nothing, while placing them in
different subgroups permits a direct trade-off evaluation to
be made between this property in question and the proper-
ties measured by the other parameters in both subgroups.

A few comments are in order at this time as to the sup-
posedly symmetrical nature of the parameter data. While it
is true that checkers is a zero-sum game and while it is true
that the parameters are all defined in a symmetrical way,
that is, as far as black vs white is concerned, the value of a
board situation as defined by these parameters is actually
dependent upon whose turn it is to play. A small but real
bias normally exists for most parameters in favor of the side
whose turn it is to move, although for certain parameters
the reverse is true. The linear polynomial method of scoring
is unfortunately not sensitive to these peculiarities of the
different parameters since the partial scores for all types are
simply added together. The signature table procedure
should be able to take the added complication into account.
Of course, the distinctions will be lost if the data are incor-
rectly stored or if they are incorrectly acquired. By storing
the data in the uncompressed form one can evaluate this
effect. More will be said about this matter later.

In the arrangement shown in Fig. 4 there were 27 param-
eters divided into 9 groups of three each, with each group
being made up of one 3-valued parameter, one 5-valued
parameter and one 7-valued parameter. Each first level sig-
nature table thus had 105 entries. The output values from
each of these tables were quantized into five values and sec-
ond level signature tables were employed to combine these
in sets of three. These second level tables thus had 125 en-
tries each. These outputs are further quantized into 7 levels
and a third level signature table with 343 entries was used
to combine the outputs from the three second-level tables
into a final output which was used as the final board evalu-
ation. Obviously, the parameters used to enter the first level
tables were grouped together on the basis of their assumed
(and in some cases measured) interdependencies while the
resulting signature types were again grouped together as
well as possible, consistent with their assumed interdepen-
dencies. As always, there was a complete set of these tables
for each of the six game phases. The tables were stored in
full, without making use of the zero-sum characteristic to
halve their size, and occupied 20,956 cells in memory. Out-
puts from the first level tables were quantized into 5 levels
and the outputs from the second level tables into 7 levels.

The latest signature table procedure
The arrangement shown in Fig. 5 used 24 parameters which
were divided into 6 subgroups of 4 parameters each, with

612 each subgroup containing one 5-valued parameter and

A. L. SAMUEL

three 3-valued parameters. In this case the first level tables
were compacted by taking advantage of the assumed sym-
metrical character of the data, although this is a dubious
procedure as already noted. It was justified in this case be-
cause of the added parameter interactions which this made
possible and because of a very large inverse effect of table
size on speed of learning. This reduced the size of the first
level tables to 68 words each. The outputs from the first lev-
el tables were quantized into 5 levels as before and the out-
puts from the second level tables were quantized into 15
levels. The second and third level tables were not com-
pacted, in an attempt to preserve some non-symmetrical
features. The total memory requirement for the tables as
thus constituted was 10,136 words.

Before we can discuss the results obtained with the signa-
ture table scheme it will be necessary to turn our attention
to the various book learning procedures.

Book learning
While book learning was mentioned briefly in Ref. 1, we
will describe it in some detail as it was used throughout the
studies now to be reported. Just as books speed up human
learning, one might expect that a substantial increase in
machine-learning speed might result if some use could be
made of book information, in this case, the existing library
of master play. To this end a reasonable sample (approxi-
mately 250,000 board situations) of this master play has
been key punched and transcribed to magnetic tape. These
are mostly draw games; in those cases where a win was
achieved, data are used only from the moves made by the
winning side. The program has been arranged to play
through these recorded games considering one side, then the
other, much as a person might do, analyzing the situation in
terms of the existing evaluation procedures and listing the
preferred move. This move is then compared with the book-
recommended move and a suitable adjustment made in the
evaluation procedure. This, of course, assumes that the
book-recommended move is the only correct move, which
it may not be, either because of a plurality of good moves or
in some cases because of an actual error. However, if
enough book moves are used, if the books are usually cor-
rect and if the adjustments per move are of the proper size,
the process should converge toward an optimum evaluation
procedure, subject always to a basic limitation as to the ap-
propriateness and completeness of the parameter list used.

While it still takes a substantial amount of machine time
to play through the necessary book games, the learning
process is very much faster than for learning from actual
play. In the first place, the game paths followed are from the
start representative of the very best play since the program
is forced always to make the recommended book move be-
fore proceeding to considering the next move. Secondly, it
is possible to assign values to be associated with the moves
in a very direct fashion without depending upon the unrelia-

ble techniques which were earlier described. Finally the
analysis of each move can be extremely limited, with little
or no minimaxing, since the only use made of the overall
scores is that of measuring the learning, whereas in the
earlier procedures these scores were needed to determine
credit assignments to the parameters. The net effect of these
factors is to make it possible to consider many more moves,
at the rate of 300 to 600 moves per minute rather than the
roughly one move per minute rate which is typical for
actual games.

We will first explain how learning is achieved in terms of
coefficients in a linear polynomial and then go on to the
signature table case.

During the learning process, use must be made of the
previously determined coefficients to perform the evalua-
tion of all board situations either right after the initial moves
or, if jump situations are encountered, at some terminating
ply depth with the scores backed up by the mini-maxing pro-
cedure. During this mini-maxing, it is also necessary to
back up the values of the parameter values themselves (i-e.,
the terms without coefficients), associated with the selected
terminating board situations corresponding to the opti-
mized path leading from each of the possible first moves. If
there are 9 possible moves, a 9 X 27 table will be produced
in which the rows correspond to the 9 different moves and
the columns correspond to the 27 different parameters. On
the basis of the book information, one row is indicated as
being the best move.

The program must analyze the data within the table and
accumulate totals which on the average indicate the relative
worth of the different parameters in predicting the book
move, and it must alter the coefficients to reflect the cumula-
tive learning indicated by these totals. A variety of different
procedures has been tested for accumulating totals; one of
the simplest, and surprisingly, the most effective, seems to
be to simply count the number of moves, for each param-
eter separately, for which the parameter value is larger than
the value associated with the book move and the number of
moves for which the parameter value is smaller than the
value associated with the book move. If these cumulated
counts over all board situations examined to date are
designated H a n d L, then one measure of the goodness of
the parameter in predicting the book move is given by

c = (L - H)/(L + H) .
This has the dimensions of a correlation coefficient. It would
have a value of + 1 if the parameter in question always pre-
dicted the book move, a value of - 1 if it never made a cor-
rect prediction, and a value of 0 if there was no correlation
between the machine indications and the book. The best
procedure found to date is simply to use the values of the
C's so obtained as the coefficients in the evaluation poly-
nomial, although arguments can be advanced for the use of
the values of the C's raised to some power greater than 1

to overcome the effect of several inconsequential terms over-
riding a valuable indication from some other term as men-
tioned earlier.

Typical coefficients as tabulated by the computer are
shown in Table 1 based on roughly 150,000 board situations
and using 31 functions during the learning process. The 19
terms per phase having the largest magnitude coefficients
are listed. The play against Hellman mentioned earlier used
this particular set of terms.

Book learning using signature tables
Extending this book learning technique to the signature
table case is relatively easy. All that need be done is to back
up the signatures corresponding to the signature types being
used in a way quite analogous to the handling of param-
eters in the linear polynomial case. Taking the example used
earlier, one signature corresponding to one possible move
might be + - 0 - - (actually stored in the machine in
binary form). Each signature type for each possible move is
similarly characterized. Two totals (called D and A) are ac-
cumulated for each of the possible signature types. Addi-
tions of 1 each are made to the D totals for each signature
for the moves that were not identified as the preferred book
move and an addition of n, where n is the number of non-
book moves, is made to the A totals for the signatures iden-
tified with the recommended book move. The reason for
adding n to the book move A totals is, of course, to give
greater positive weight to the book recommended move
than is the negative weight given to moves that do not hap-
pen to correspond to the currentIy found book recommen-
dation (there may be more than one good move and some
other authority might recommend one of the other moves).
This procedure has the incidental effect of maintaining
equality between the grand totals of the A's and D's ac-
cumulated separately for all signatures in each table, and so
of preserving a zero-sum character for the data.

When enough data have been accumulated for many dif-
ferent board situations, additions will have been made in
the A and D columns against most of the signature argu-
ments. The program then computes correlation coefficients
for each signature defined in an analogous fashion to the
earlier usage as

c = (A - D) / (A + 0) .
In the case of the third level table these values are used di-
rectly as board evaluations. For the other two levels in the
signature table hierarchy, the actual values to be entered
must be quantized so as to restrict the range of the tabu-
lated values. This quantization has normally been done by
first separating out all zero values and entering them into
the tables as such. The nonzero values are then quantized
by ranking the positive values and negative values sepa-
rately into the desired number of equisized groups. The
table entries are then made in terms of the small positive 61 31

MACHINE LEARNING: PT. 11

Table 1 Linear polynomial terms (parameter names and learned coefficients) as used in the games with W. F. Hellman. These coefficients
resulted from an analysis of approximately 150,000 book moves.

Phase I - Terms and coefficients
GUARD QUART DIAGL EDGES FRONT ANGLE CENTR NODES DCHOL ADVAN

0.33
PINS DYKSQ FREE EXCHS THRET STARS PRESS UNCEN LINES

0.07 0.07 0.06 -0.05 0.04 0.04 -0.04 0.03 0.02

0.29 -0.21 -0.20 -0.19 -0.18 0.14 0.13 0.11 -0.08

Phase 2 - Terms and coefficients
SPIKE GUARD EDGES QUART CENTR ANGLE FRONT ADVAN SHOVE THRET

0.85 0.36 -0.24 0.23 0.21 -0.21 -0.19 -0.18 0.16 0.14
NODES PINS DCHOL STARS OFSET HOLES DIAGL UNCEN MOBIL

0.13 0.11 -.lo -0.09 0.09 0.09 -0.09 0.08 0.05
Phase 3 - Terms and coefficients

SPIKE KCENT PANTS GUARD FRONT CRAMP ADVAN EDGES CENTR STARS
0.88 0.48 0.42 0.37 -0.23

QUART ANGLE THRET DCHOL PINS
0.23 -0.23 -0.22

SHOVE NODES UNCEN OFSET
0.19 -0.19 0.15 0.14 0.13 0.10 0.10 0.09 0.08

0.20 -0.19

Phase 4 - Terms and coefficients
SPIKE GUARD PANTS KCENT STARS ADVAN FRONT THRET ANGLE EDGES

DIAGL CENTR SHOVE QUART PINS UNCEN OFSET DENYS UNDEN
0.86 0.62 0.61 0.56 -0.30 -0.30 -0.27 0.26 -0.23 -0.22

0.22 0.20 0.18 0.16 0.12 0.1 1 0.09 0.09 -0.07
Phase 5 - Terms and coefficients

GUARD SPIKE PANTS KCENT THRET DIAGL ADVAN UNCEN ANGLE SHOVE

UNDEN FRONT DENYS PINS CENTR EDGES DYKSQ QUART DEUCE
0.81 0.68 0.62 0.55 0.36 0.33 -0.32 0.27 -0.26 0.25

-0.22 -0.22 0.20 0.19 0.18 “0.16 -0.16 0.15 0.06
Phase 6 - Terms and coefficients

PRESS KCENT UNCEN UNDEN DYKSQ DENYS SHOVE DIAGL SPIKE THRET

EXCHS OFSET ADVAN PINS ANGLE FRONT DEUCE FREE QUART
- 0.54 0.54 0.45 -0.41 - 0.40 0.40 0.39 0.39 0.37 0.36

“0.34 -0.26 -0.24 0.23 -0.23 -0.32 -0.16 -0.11 0.08

and negative integer numbers used to specify the relative
ranking order of these groups.

This process of updating the signature tables themselves
is done at intervals as determined by the rate at which sig-
nificant data accumulate. During the intervals between up-
dating, additions are, of course, continually being made to
the tables of A’s and D’s.

There are several problems associated with this newer
learning scheme. Reference has already been made to the
space and time limitations which restrict the number of
parameters to be combined in each signature type and re-
strict the range allowed for each parameter. The program
has been written so that these numbers may be easily varied
but this facility is of little use because of the very rapid rate
at which the performance and the storage requirements vary
with the values chosen. Values less than those indicated lead
to performance but little different from that exhibited by
the older linear polynomial experiments, while larger values
greatly increase the memory requirements and slow down
the learning rate. A great deal of juggling is required in or-
der to make even the simplest change if the operating times
are to be kept within a reasonable range, and this still fur-
ther complicates the problem of considering meaningful

614 experiments.

This inverse effect of the table size on the learning rate
comes about because of the need to accumulate data in the
A and D columns for each signature table entry. The effect
is, of course, compounded by the hierarchical nature of the
table complex. At the start of a new learning run there will
be no entries in any of the tables, the computed C‘s must
all be set to zero and the program will have no basis for the
mini-maxing procedure. Depending upon the particular
selection of the book games used there may, in fact, be a
relatively long period of time before a significant fraction
of signatures will have been encountered, and as a conse-
quence, statistically unreliable data will persist in the “C”
table. Not only will the individual function values be sus-
pect but the quantizing levels will perforce be based on in-
sufficient data as well. The magnitude of this effect will, of
course, depend upon the size of the tables that the program
is generating.

Palliative measures can be adopted to smooth the C tables
in order to compensate for the blank entries and for entries
based on insufficient data. Four of the more effective
smoothing techniques have been found to be (1) smoothing
by inversion, (2) smoothing from adjacent phases, (3)
smoothing by interpolation and (4) smoothing by extrapola-
tion. Smoothing is, of course, most needed during the early

A. L. SAMUEL

stages of the learning process but it also must be used dur-
ing play even after a rather extensive learning run.

As a matter of fact, certain signatures are so improbable
during book play (some may in fact be impossible) that
voids are still found to exist in the signature tables, even
after playing 100,000 book game board situations. There is
the reassuring thought that signatures not found during the
learning process are also unlikely to be found during play.
However, because of the very many board situations ex-
plored during the look-ahead process and presumably be-
cause of the consequences of making decisions on the basis
of statistically unreliable entries, the quality of the play
using unsmoothed data was found to be somewhat erratic
until a fairly large amount of learning had been achieved.

It should be pointed out, that the smoothing techniques
are employed as temporary expedients. All previous
smoothed results are discarded and completely new calcu-
lations of values of C are made periodically during learning
from the accumulated and uncorrupted A and D data. The
effects of smoothing do persist, however, since the entries
in the second and third level tables, and hence the locations
at which the A and D data are stored are influenced by it.

Smoothing by inversion is done by averaging positive and
negative entries (with compensating sign inversions), and it
is partially justified by the zero-sum symmetrical charac-
teristic of the data.

Smoothing from adjacent phases is done by transferring
data between phases. This is possible because of the random
way in which data accumulate for the different phases, and
it is reasonably valid because the values associated with a
given signature vary but little between adjacent phases.
This form of smoothing has been found to be of but lim-
ited utility since the same reasons which account for the ab-
sence of specific data for one phase often operate to prevent
corresponding data from being generated for adjacent
phases.

Smoothing by interpolation is based on the assumption
that a missing correlation for a signature which contains
one or more zeros in its argument can be approximated by
averaging the values appearing for the related signatures
where the zeros are individually replaced by a + and then
by a - . In order for this to be effective there must be data
available for both the + and - cases for at least one
of the zero-valued parameters. This form of smoothing as-
sumes a linear relationship for the effect of the parameter
to which the interpolation is applied. It is therefore, no bet-
ter as far as this one parameter is concerned than the older
linear polynomial procedure. This form of smoothing is
quite ineffectual since all too often balanced pairs of entries
cannot be found.

Smoothing by extrapolation may take two forms, the
simplest being when entries are found for the zero value of
some particular function and for either the + or the - case
and a void for the remaining case is to be filled. All too

Table 2 Correlation coefficients measuring the effects of learning
for the signature table procedure and for the linear polynomial
procedure as a function of the total number of book moves
analyzed. These tests used 27 parameters which for the signature
table score were grouped in the configuration shown in Figure 4.

Correlation coefficient, C

Signature
Total number of table Polynomial

book moves analyzed case case

336 -0.08
826

-0.18
+0.06 -0.13

1,272 0.13 +0.06
1,769 0.18 0.10
2,705 0.27 0.15
3,487 0.31 0.16
4,680 0.34 0.15
5,446 0.36 0.16
8,933 0.38 0.19

10,762 0.39 0.20
14,240 0.40 0.21
17,527 0.41 0.22
21,302 0.41 0.23
23,666 0.42 0.23
30,173 0.43 0.24
40,082 0.43 0.25
50,294 0.43 0.26
55,165 0.44 0.26
66,663 0.45 0.26
70,083 0.45 0.26
90,093 0.46 0.26

106,477 0.46 0.26
120,247 0.47 0.26
145,021 0.47 0.26
173,091 0.48 0.26
183,877 0.48 0.26

often however, the more recalcitrant cases are those in
which the zero entry only for some one parameter is found
and substitute data are sought for both the + and the -
case. Here we have recourse to the fact that it is possible to
compute the apparent effect of the missing parameter from
all of the pertinent data in the signature table, on the as-
sumption of linearity. The program therefore computes a
correlation coefficient for this parameter alone and uses
this with the found signature data. Admittedly this is a very
dangerous form of extrapolation since it completely ignores
all nonlinear effects, but it is often the only recourse.

Signature table learning results
The results of the best signature table learning run made to
date are shown in Table 2 . This particular run was arranged
to yield comparable figures for both the newer signature
table procedure and the older linear polynomial procedure.
Because of the great amount of machine time required (ap-
proximately 10 hours per run) it has not yet been possible to
optimize (1) the choice of parameters to be used, (2) the
range of values to be assigned to these parameters, (3) the
specific assignments of parameters to signature types, (4) the 6151

MACHINE LEARNING: PT. I1

detailed hierarchical structure of the signature tables, (5) the
table sizes and (6) the various smoothing techniques which
must be used during the early learning phases.

Table 2 reports the apparent goodness of play based upon
a correlation factor defined as

c = (L - H) / (L + H) ,
where L is the accumulated count of all available moves
which the program rates lower than its rating for the book
recommended move and H is the accumulated count of all
available moves which the program rates higher than or
equal to its rating for the book recommended move. Dur-
ing this learning run the program looked ahead only a single
ply except in those cases where jumps were pending. The
observed correlation coefficients are fairly good measures of
the goodness of the evaluation procedures without mini-
maxing. Coefficients were computed during the run both by
using the signature table procedure and by the older linear
polynomial procedure. These figures are tabulated in the
second and third columns against the total number of moves
in column one. It will be observed that the coefficient for
the polynomial procedure appears to stabilize at a figure of
0.26 after about 50,000 moves, while the coefficient for the
signature table procedure continues to rise and finally after
perhaps 175,000 moves reaches a limit of 0.48. Interestingly
enough the signature-table coefficient was always larger
than the polynomial coefficient even during the very early
stage although a detailed analysis on a move-by-move basis,
which cannot be easily reproduced here, did show that the
signature table method was the more erratic of the two dur-
ing this stage.

It should be noted that these linear polynomial results are
not directly comparable with the coefficients for individual
terms as reported in Table 1, since for Table 1 the H values
used in computing the C‘s did not include those moves rated
equal to the book move while in Table 2 equals are included,
and the computed coefficients are correspondingly lower.
The discrepancy is particularly marked with respect to those
parameters which are usually zero for most moves but
which may be extremely valuable for their differentiating
ability when they do depart from zero. Most of the terms
with high coefficients in Table 1 have this characteristic.
Furthermore, when mini-maxing was required during the
two tests it was based on different criteria, for Table 1 on the
linear polynomial and for Table 2 on signature tables.

The results of Table 2 seem to indicate that the signature
table procedure is superior to the linear polynomial proce-
dure even in its presently unoptimized form. It would be
nice if one could measure this improvement in some more
precise way, making a correct allowance for the difference
in the computation times.

higher than its rating of the book recommended move.
Typical figures are tabulated below, measured for a test lot
of 895 representative moves after the program had learned
by analyzing 173,989 book moves:

moves higher or equal 0 1 2 3 4 5 6
fractional times found 0.38 0.26 0.16 0.10 0.06 0.03 0.01

In view of the high probability of occurrence of two equally
acceptable moves, the sum of the figures in the first two
columns, namely 0.64, is a reasonable estimate of the frac-
tion of time that the program would make an acceptable
move without look-ahead and mini-maxing. Look-ahead
greatly improves the play and accounts for the difference
between this prediction and the observed fact that the play-
ing program tends to follow book-recommended moves a
much higher fraction of the time.

Introduction of strategies
The chief defect of the program in the recent past, according
to several checker masters, seems to have been its failure to
maintain any fixed strategy during play. The good player
during his own play will note that a given board situation is
favorable to him in some one respect and perhaps unfavor-
able in some second respect, and he will follow some fairly
consistent policy for several moves in a row. In general he
will try to maintain his advantage and at the same time to
overcome the unfavorable aspect. In doing this he may
more or less ignore other secondary properties which, under
different circumstances, might themselves be dominant.
The program, as described, treats each board situation as a
new problem. It is true that this procedure does not allow
the program to exploit those human failings of the op-
ponent that might have been revealed by the earlier play or
to conduct a war of nerves intended to trick the opponent.
Such actions have little place in games of complete infor-
mation and can well be ignored.8

What may certainly be questioned is the failure to take
account of the initial board situation in setting the goals to
be considered during the look-ahead process. Were the

anonymous reviewer who quite rightly pointed out that it would be desirable
This statement can be questioned and, in fact, has been questioned by an

for the program to be able to define what is called “deep objectives,” and,
more importantly, to be able to detect such “deep objectives” on the part of
a human opponent. The reviewer went on to say in part ““the good player
will sometimes define a ‘deep objective’ and maneuver toward that point. He
is always on the lookout for possibilities which will help him to get the better
of the opponent. The opponent, unaware of his true objective until too late,
does not defend adequately and loses.-It is most helpful to him to know
that his opponent is not also playing a similar ‘deep game.’ I believe that the
‘practical indeterminacy’ of checkers makes the technique of ‘deep’ objec-
tives by good players quite feasible. Indeed, I don’t doubt the technique is
part of the basic equipment of any champion player, however inarticulately
he may describe it. This is perhaps the reason Hellman did better in the games
by mail. He bad time to study out appropriately ‘deep’ objectives and then
to realize them. This is also what checker masters have in mind when they
criticize the program’s failure to maintain any fixed strategy during play.”

This ooint of view finds suooort in the observation that those master ular-
Perhaps a better way to assess the goodness of the play ers whd have defeated the computer have all asked searching questions re-

using signature tables is to list the fraction of the time that hold the program in awe and generally fail to make any attempt to under-
garding the program, while good players who fail to win usually seem to

stand it.
61 6 the program rates 0, then 1, 2, 3, etc. moves as equal to or This opens up what may be a fruitful line for additional research.

A. L. SAMUEL

program able to do this, then it could adopt a strategy for
any particular move. If the program finally made a move
that was consistent with this strategy, and if the opponent
were unable to vitiate this strategy, then the program would,
on the next move, again tend to adopt the same strategy.
Of course, if the program had been unable to maintain an
advantage by following its initial strategy, it might now
find that a different strategy was indicated and it would
therefore change its strategy. Nevertheless, on the average,
the program might follow a given strategy for several moves
in a row and so exhibit playing characteristics that would
give the impression of long range planning.

A possible mechanism for introducing this kind of strate-
gic planning is provided by the signature table procedure
and by the plausibility analysis. It is only necessary to view
the different signature types as different strategic elements
and to alter the relative weights assigned to the different sig-
nature types as a result of the plausibility analysis of the
initial board situation. For this to be effective, some care
must be given to the groupings of the parameters into the
signature types so that these signature types tend to cor-
respond to recognizable strategic concepts. Fortunately, the
same initial-level grouping of parameters that is indicated
by interdependency considerations seems to be reasonable
in terms of strategies. We conclude that it is quite feasible
to introduce the concept of strategy in this restricted way.

For reasons of symmetry, it seems desirable to pick two
signature types for emphasis, that one yielding the highest
positive value and that one yielding the most negative value
for the most plausible move found during the initial plausi-
bility analysis. This procedure recognizes the fact that to
the opponent, the signs are reversed and his strongest sig-
nature type will be the first player’s weakest one and vice
versa. The simplest way to emphasize a particular strategy
is to multiply the resulting values found for the two selected
signature types by some arbitrary constant before entering
a subsequent stage of the analysis. A factor of 2 (with a
limit on the maximum resulting value so as not to exceed

the table range) seemed reasonable and this has been used
for most of the experiments to date.

The results to date have been disappointing, presumably
because of the ineffectual arrangement of terms into usable
strategic groups, and as a consequence, this method of in-
troducing strategies has been temporarily abandoned.

Conclusions
While the goal outlined in Ref. 1, that of getting the pro-
gram to generate its own parameters, remains as fzr in the
future as it seemed to be in 1959, we can conclude that tech-
niques are now in hand for dealing with many of the tree
pruning and parameter interaction problems which were
certainly much less well understood at the time of the earlier
paper. Perhaps with these newer tools we may be able to
apply machine learning techniques to many problems of
economic importance without waiting for the long-sought
ultimate solution.

Acknowledgments
These studies were largely carried out while the writer was
at the Thomas J. Watson Research Laboratories of the IBM
Corporation, and while he was a Visiting Professor at
M.I.T. More recently, the work has been supported in part
by Stanford University and by the Advance Research
Projects Agency of the Office of the Secretary of Defense
(SD-183). The IBM Corporation has continued to aid the
work by supplying time on an IBM 7094 computer at their
San Jose Development Laboratories. Many individuals
have contributed to these studies, and in particular, Arnold
Griffith of M.I.T. deserves commendation for suggesting
the initial form of the signature table procedure. The con-
tinuing interest and cooperation of the officers and player-
members of the American Checker Federation has been
most helpful.

Received June 5 , 1967.

i

I

61 7

MACHINE LEARNING: PT. I1

