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Summary

This project explores the creation of an artificial player capable of playing the board game
Santorini with the aim of defeating a novice human player. It is a game with certain features
such as a high branching factor which may make traditional AI techniques ineffective, research
into traditional and more contemporary techniques are explored whilst establishing the best
solution.
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Chapter 1

Introduction

1.1 The problem

Creating Intelligent agents capable of playing games has been a common desire of computer
scientists since even before the field of AI (Artificial Intelligence) was properly established,
mathematicians were devising algorithms that would be able to evaluate a the state of a chess
board and make an “intelligent” move as early as 1950 [15]. With the arrival of modern
computers came the consideration of using “Type A” search methods outlined in Claude
Shannon’s paper that took a brute force search approach to finding the next move [15]. Quickly
it was realised that brute force searching would not be sufficient due to time constraints, so
techniques such as Minimax and Heuristic state evaluation [12] were developed to make the
algorithms more efficient. It was not until computing power dramatically increased in the
subsequent decades more that more complex complete information games such as Checkers,
Chess, and most recently Go have had their human grand masters defeated by the best AI
adversaries [6]. However as the complexity of the games have increased (Go), the AI techniques
required to defeat them have evolved [16]. I plan to look at the game Santorini, a quite new
and untested perfect information game with a large branching factor, investigating if
traditional AI implementation will be sufficient to create an AI capable of defeating a human or
whether or not a newer approach such as Reinforcement learning will be more effective.

1.2 Aims

The aim of this project is to identify and implement a combination of AI techniques that will
successfully be able to defeat a novice human player at the board game Santorini.

1.3 Objectives

The intermediate objectives of the project act as a means of breaking the project down into a
clearer more manageable challenge, they are outlined as follows.

• Conduct an in depth review of relevant information including games and Artificial
Intelligence techniques in games.

• Develop a full human playable version of the board game.

• Implement a reduce size instance of the board game Santorini for trialling and testing AI
techniques.

• Develop an agent that can intelligently play the board game.

• Refine and improve the agent to play well enough to beat a novice player of the game.

2
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1.4 Project Plan

The Gantt chart below – Figure 1.1, details the full timeline of the project from the beginning
of the 2019/2020 academic year. Up until December the main task of the project has been to
conduct background research on the possible AI techniques to be implemented to play the
game and the implementation of the board game. After the exam period ending on the 24th of
January, implementing the game in code will be the first task that needs to be completed, as
until this has happened there will be nothing to develop an AI to play, this task needs to be
started promptly as it is a non-trivial task and the time which it may take is somewhat
unknown to me, and without it there can be no further progression. By mid-February I expect
to have a minimum implementation of the game so testing of techniques can begin. As can be
seen in the chart I have the background research continuing up until the end of the
implementation as I expect as the project progresses certain avenues of research to become less
useful and new ones required to be researched in their place as problems and difficulties may
occur during implementation. Once implementation is completed I will begin testing and
evaluation as well as beginning the report along side this, this will be an intense period of work
during March but a necessary one as I think leaving the report to the very end will cause
undue stress if there is a much greater time pressure. I am hoping to have completed a first
draft by the 6th of April, this will will give me a 3 week contingency period for my advisor to
give me some feedback, to which I should have time to make adjustments based upon and to
complete any additional testing I may need to conduct.

Figure 1.1: Gantt chart detailing project timeline

Also this will give me a chance to step away from the project for a few days before going back
and reading it again, reviewing the structure and writing from a fresh perspective before
finalising the report and submitting it on the 27th of April.

1.5 Risk Mitigation

Due to the nature of the project, the list of tasks generally requires the previous to be
completed before the next one can begin, i.e Implementation cannot begin until adequate
research has been conducted, and testing cannot begin until a minimally functional
implementation has been successfully completed. This comes with inherent risk as if
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implementation is halted for one reason or another it then stops the progress of the rest of the
project. This is why I’ve tried to spread the project over all of the available time of the term as
well as factoring in a contingency time at the end, in case any of the project’s aspects take
longer than anticipated there is a 21 day surplus that can be eaten into if needed.

The main task which carries risk is the implementation of the Game, as without it I cannot
progress, I intended to incrementally build the game from a minimal playable implementation
to increasing the richness of features if there is time, I will track this and manage it through
using GitHub, a version control system. This way I will have a detailed timeline of work flow
and can re-visit previous versions of the program should I need to, this also makes creating new
features less risky as I can hold a stable version of my game on the master branch and create
new feature branches when implementing something additional. However, it is not until this
minimal playable implementation is completed that I can begin work on implementing an AI,
again I intend to create a minimal functional implementation of an AI capable of playing
against an opponent making random moves. Then I will investigate alternative solutions and
AI techniques capable of playing to a decent standard.

From a time management perspective, I need to be aware of the workload of my project within
the context of the rest of not only my term, but my advisor’s term also. As we will have other
deadlines that need fulfilling be it coursework for me or marking for them, this will require a
good channel of regular communication. I intend to meet weekly with my supervisor to check
in with the progress I have made each week and whether or not they think my timescale and
scope of the project is still feasible or that I’ll need to readjust my goals.



Chapter 2

Background Research

Before the project plan can begin, first a comprehensive understanding of the problem space
must be achieved. This way a clear formal definition of what is to be implemented can be
outlined along with the best way to go about that. To achieve this, research into the areas of
Game theory, Adversarial games, and AI techniques for perfect information games has been
conducted.

2.1 Game Theory

Game theory is the field of study of conflict and cooperation. Pioneered by mathematicians
such as Emile Borel and Jon Von Neumann in the 1920s, it was later definitively established by
the publication of “Theory of Games and Economic Behaviours” by Von Neumann and
Economist Oskar Morgenstern [18]. It is the study of modelling situations or “Games” in which
two or more parties interact in a strategic manor in which their decisions affect the outcome of
the other parties’ payoff. These situations are restricted by a set of rules by which the parties
have to abide – Not cheating.

2.1.1 Definitions

To be able to discuss game theory and its application to different types of games and this
project we must first define some of the terms and concepts used in the field to formalise
situations. The following are taken from a textbook on the Basics of Game Theory [17].

• Game: Any set of circumstances that has a result dependent on the actions of two or
more decision-makers (players).

• Rules: A formalised set of rules which enforce the restrictions of what moves are valid
and moves that are not valid. These restrictions facilitate the need for players to make
strategic decisions.

• Players: A strategic decision maker within the context of the game.

• State: A particular layout of a game’s components

• Move: a decision made by a player in a given state.

• Not Cheating: Playing the game strictly adhering to the rules. A game cannot be
modelled if the players do not adhere to the rules.

• Outcome: Outcomes are evaluated based on one or more moves made within the game.

• Payoff: The pay-out a player receives from arriving at a particular outcome. The optimal
outcome which each player is after is winning the game.

5
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• Rational Player: A player that makes decisions optimally in their self interest to
maximise payoff, whilst being aware that other players are aiming to do the same.

2.1.2 Strategy

In a game, a move or decision is known as a strategy, each player has a of a set pure strategies,
these are the moves available to them at when it is their turn to play, each of which will have a
quantifiable payoff depending on the strategy selected by their opponent [5]. For example in
Rock, Paper, Scissors (RPS) each player has the strategy set (Rock,Paper,Scissors) to pick
from, each of these is a pure strategy so if a player played a single pure strategy e.g rock, they
would pick rock with certainty for each play of the game. This would quickly be countered by a
pure strategy of their opponent playing paper.

However, a player can assign a probability to each of the pure strategies in their strategy set to
create a mixed strategy, this generally will out perform the use of one pure strategy [5]. So in
the example of RPS a player who plays a mixed strategy of (rock = 0.33, paper=0.34, scissors
= 0.33) is less likely to be dominated by their opponent as their moves are not predictable. In
a mixed strategy the probabilities of each pure strategy must cumulatively sum to 1.

2.1.3 Game Classifications and Notation

Zero-sum and Non Zero-sum games
A Zero-sum game or constant sum game is one in which the gain in payoff to one play is equal
to the loss of the other players in the game [4]. In most strategy games the aim of the game is
to win, in the case of two player games, If player 1 wins and is assigned a score of +1, then
their single opponent can be assigned a score of -1. If the game is a draw both players score 0,
in any eventuality the outcome is zero [13]. For non zero-sum games in the case of our two
player scenario the winning of player 1 doesn’t necessarily dictate the losing of player 2, players
may win at the same time or lose at the same time resulting in scores that can potentially be
above or below zero. Games such as roulette fall into the category of non zero-sum games.

Perfect and Imperfect information games
Perfect information games are ones in which all the information of the game state is available
to all players of the game. The players do not necessarily know what the other will do, but
they are aware of all the previous moves made, the possible moves available to their opponent,
and the subsequent states that may occur as a result of each of those moves [12]. In these
games each player has exactly the same amount of knowledge as their opponents, games such
as Chess, Checker and Go are all examples of Perfect information games. Santorini is an
example of a perfect information game.

Imperfect information games are those in which you cannot possibly predict the potential move
of an opponent as there is an unknown set of information only your opponent can see or a
random quantity that is not revealed until the player makes their move [12]. Such as the roll of
the dice or the drawing of a card, games such as backgammon or bridge have imperfect
information.
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Sequential and Simultaneous Games
Sequential games are those that are played by players executing consecutive turns, a players
turn cannot begin until the previous player’s turn has ended. Simultaneous games, sometimes
known as matrix games are those in which players make their move at the same time without
communicating, so neither has any information on their opponents move, for example Rock
paper scissors, or the Prisoner dilemma (without communication) meaning that all
simultaneous games are imperfect information games as each player cannot know what the
other is going to do [17].

Game representation
When modelling games, the representation of the game state and the strategies available to
each player is key in understanding and analysing the game and the players [5]. For
non-cooperative games there are two types of representation, the normal form - for
simultaneous games, and the extensive form - for sequential games. Co-operative game
representations have not been considered as they are not pertinent to the project.

The extensive form is a tree representation of a game as can be seen in 2.2, the root node
represents the current state of the game and the branches are the decisions available to the
active player which result in subsequent states/nodes. Each level represents a players move
thus the depth of the tree represents the number of moves in the game. The values at the
leaves are called terminal states, these occur when there are no more available moves in the
game and represent the payoff for that sequence of moves, the extensive form is more
informative as it contains the history of moves played in the game as well as the current state,
this is not applicable to simultaneous games.

The Normal form or matrix representation of a game is a matrix containing all the possible
strategy combinations between the all of the players of the game and their respective payoffs [4]
see Fig 2.1, the number of players is represented by the dimension of the . In Fig 2.1 if player I
selects strategy j and player II selects strategy k then the payoff to player I will be ajk and
payoff to player II -ajk . This representation makes it clear that a single player’s decision is not
the only one affecting the outcome of the game [5].

Figure 2.1: A matrix or normal form repre-
sentation of a two person zero-sum simulta-
neous game. [4]

Figure 2.2: An extensive form representa-
tion of an abstract sequential game. [4]

One, Two and N player games
In most strategy games the aim is to win, when modelling a game it is simpler to have fewer
players in the game, as more parties are involved each can affect the pay off of all of the other
players, causing the number of strategies that need to be considered to increase and thus
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representing the game can quickly become very complex [17]. Although, one player games are
generally not considered by game theory as they usually either have an obvious winning
strategy if there are no external factors determining the outcome of the game, or the game is
defined by a stochastic event such as in Roulette, there is no certain winning strategy.

Two player zero-sum adversarial games are the most straightforward to model as the payoff to
one player is the negative pay off of the other, this makes assessing which strategy to pick
easier, although strategies may have a poor immediate payoff but have a greater long term
payoff for example, trading material for a potentially better board position in chess. This
category will be the focus of the proejct as Satorini is a two player zero sum game.

When it comes to N-player games, that is games with three or more players, new difficulties
and other considerations arise. The number of combinations of strategies increases and also the
potential for coalitions (two or more players making decisions together to increase their mutual
pay-off at the expense of the others in the game) is introduced [17].

Cooperative and Non-cooperative games
In non-cooperative games each player is making decisions purely for their own payoff and there
is no alliance or agreement they can make with another opponent which will mutually benefit
them in terms of the goal of the game. This is the case for all two player games in which the
aim is to win, and thus defeat the other person.
In a cooperative game any subset of players may form a coalition, thus all cooperative games
must have three or more players, the coalition then aims to make decisions that will achieve a
payoff that benefits each member of the coalition more than they would have been able to
acting on their own [4]. Achieving a fair distribution of the total payoff however, is non-trivial
as it is difficult to formally define fair.

Stochastic and Deterministic games
A game is said to be deterministic if, for a given move in a given state the result will be exactly
the same every time that move is executed. Each move in a deterministic game has a
pre-determined result for all the possible moves in all of the possible game states [12]. In
contrast a game is Stochastic if there exists an element of uncertainty or chance for a given
move in a particular state, like the roll of dice or taking a card at random from a deck, this
affects the outcome of a given state meaning one state can have multiple different outcomes
depending on the stochastic element of the move [12]. Games such as Backgammon and
Monopoly are Stochastic games, with Chess and Checkers being the most famous deterministic
games, Santorini being a wholly deterministic game.

2.1.4 Game Trees

A game tree is the extensive form (see Chapter 2.1) representation of an entire game with the
starting state as the root node, this allows the game to be mapped out into every possible state
until it reaches it’s terminal states, they are then assigned a utility value based on the outcome
of the game to the current player, which may be win draw or loss. Game tree’s are useful as
they can be searched to find the maximum payoff for a player, and by looking at the the
sequence of moves inform the player how to play; however, searching the game tree is often not
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trivial. The size and therefore search-ability of the game tree depends on two things, the
depth and the branching factor. The depth of the game tree is the number of total number
of moves played in the game. The branching factor is the average number of moves available to
a player at a state in the game. For Chess the average number of moves per turn is
approximately 35 with the number of turns in an average game being approximately 70, Giving
a game tree of 7035 possible states, Santorini has an average game length of 18 moves and each
with approximately 55 options giving a game tree of 1.10× 1069 nodes a game tree of a similar
magnitude to Chess, both much too large to brute force search in a reasonable time especially
on standard hardware like that available.

Figure 2.3: A game tree showing players’ and terminal moves [12]

2.1.5 ’Solved’ Games

There are a collection of games have the potential to be ’solved’, this means that for a state in
the game given that both of the players are playing perfectly (making the move with the
highest possible payoff every time) then the outcome or value of the game - win, draw, or loss
can be predicted with certainty. These games are those classified as two player, zero-sum
perfect information games [8]. There exist three tiers of solution [1, 10]:

• Strongly solved: the optimal move can be found from every state in the game.

• Weakly solved: the value of the starting state (win, draw or loss) is known as well as a
strategy for the first player to realise that state with certainty.

• Ultra-weakly solved: the value of the starting state (win draw or loss) is known.

The difficulty of solving a game has previously been tied to the state-space and game-tree
complexity [19]. However, this has been challenged [8] as there are games such as go-moku and
renju with very large state-space and game-tree complexities that have been solved [1]. More
recently in 2007 Checkers became the most complex game to be solved after 18 years of
analysis and relentless computation by more than 100 computers [14].
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2.2 Artificial Intelligence approaches

The following chapter includes research into the potential AI approaches that will be
considered for implementation during the project, these methods may have different levels of
success depending on the type of game they are applied to. This will include looking at older
more "traditional" AI methods for adversarial games such as MiniMax and newer ones such as
Monte Carlo tree search.

2.2.1 MiniMax

First outlined by Jon Von Neumann in 1928 the algorithm is applicable to zero-sum, perfect
information games. The algorithm is designed to play optimally from a given state provided
that the opponent is also playing the best possible move available to them. It does this by
recursively minimising the opponents maximum payoff [13]. The game is represented generally
in a game tree, as demonstrated in Figure 2.4 detailing a partial game tree for a game of
noughts and crosses.
The idea is the algorithm performs a depth first search from the root node – in this case the
player playing as crosses (X) to a terminal state. A terminal state is one in which either the
player has won the game, lost the game or there are no more available moves so it results in a
draw. In a two player zero-sum game like noughts and crosses, these states are evaluated by a
utility function which could translate to +1 for a winning state, -1 for a losing state and 0 for a
drawing terminal state. The intermediate nodes are all the possible interim game states, each
consecutive level being a possible move by the opposite player. The utility value of the terminal
states is then recursively passed back up the tree with the caller – the root node player
selecting the maximum possible outcome and the opponent selecting the minimum. Resulting
in a maximum for the root node caller [13]. Minimax will be a good starting point I believe
when trying to obtain initial strategies and information on the reduced size implementation of
the game, as it will be applicable to the much smaller game tree. The branching factor of the
game is too high for the full game implementation.

Figure 2.4: A Mini Max partial game tree for a game of noughts and crosses. [9]
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2.2.2 Heuristic Evaluation Function.

In a lot of cases performing a full depth search of the game tree is not feasible, it is too large, so
performing a full search takes an unreasonable amount of time, even with alpha beta pruning.
Instead in most cases it is computationally faster and can be as effective to specify a limit to
the depth of the search and evaluate each of the states at that depth with an estimated value of
that state’s utility [15] this is sometimes known as a cut-off test. This estimation is calculated
using a Heuristic evaluation function; this is a function that cannot say with certainty the
utility value of a state but can give a good estimate based on the features of that particular
state [13]. A good evaluation function will be able to assign with high accuracy values to
intermediate states that translate to their correct utility value and game outcome. An example
of how this might be implemented with Minimax is shown in the psuedo code in Figure 2.5.

Figure 2.5: Minimax psuedocode with a cut-off test evaluation. [12]

The identification and weighting of those features is what dictates whether or not a function
will be a good evaluation function. This may be related to the pieces the each player has on the
board or the way their pieces are structured. For instance in Chess many features are
considered, each piece is assigned a value pawns being the least valuable the queen being the
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most, this is called material value, the difference in material value between two players is one
indicator of who might win. However, the structure of the pieces on the board can dictate the
true Utility of the state, as there are situations in which someone with less material value may
be able to imminently win the game, making certain piece structures a feature of higher
importance or weighting. This can be represented as a function known as a linear weighted
function as in Figure 2.6, the fi being a feature of the state and wi the weighting.

Figure 2.6: Weighted evaluation function for a state s [13]

Important features are not always obvious and the subtle differences that make similar states
have very different utility values is something that is established through thorough studying
and analysis of games.

2.2.3 Alpha Beta pruning

Alpha Beta pruning is a method that truncates the game tree by storing a best value for the
MAX player so far - Alpha and a best value for the MIN player so far - Beta. These values are
updated as the minimax depth first searches, and if any path has a score that is less than the
current score of Alpha for the MAX player or Beta for the MIN player then the recursive calls
are halted and the path is pruned from the search tree [13]. This results in faster more efficient
searching of smaller game trees.

2.2.4 Lookup Tables.

One way of improving a heuristic evaluation function is to use a combination of heuristics in
conjunction with a database of known advantageous states or a set combination of moves.
These are known as lookup tables [13]. Some game states often have a vast number of possible
moves but there exists a Policy which can ensure a win for the current player, these policies are
easily executed by computers and can recognise and force wins in certain situations. This
method may be applicable to Santorini as there are certain piece configurations that can
indicate imminent wins which might be evaluated as insignificant if pieces are considered
individually.

2.2.5 Machine Learning

Machine learning is the application of an algorithm that is capable of learning and in some way
improving at the task it has been set to do without explicitly being programmed to behave
differently. This is a contrasting approach to other techniques in AI in which we aim to
program logic and decision making rules which allow agents to play “intelligently”. There are
three main types of machine learning algorithms [11]:

Supervised machine learning algorithms – these algorithms are trained on a known, classified
data-sets in which the inputs given to the algorithm have a correct output pair. They develop a
method based on the classified data-set to analyse new data and select what it interprets to be



CHAPTER 2. BACKGROUND RESEARCH 13

an appropriate classification. This classification can then be compared against the correct
classification by the algorithm which can then in turn make adjustments accordingly.

Unsupervised algorithms – conversely are trained on data-set in which the data is not classified,
these algorithms usually uncover hidden common features from a given data-set. It does not
necessarily find a “correct output” but interprets common patterns that may not initially have
been easy to spot, and then groups them together showing clusters of similar points. Both of
the aforementioned techniques are not suitable for game playing agents as a supervised
algorithm would be required to know all the outputs to every move, and a unsupervised
algorithm would only group specific moves together without there being any context in the
grand scheme of the game – evaluating payoffs.

Reinforcement learning algorithms - lie in between supervised and unsupervised learning, it is a
method in which the algorithm searches the state space attempting actions available to it within
its specified environment and receives penalties or rewards, but is not instructed explicitly how
to improve. Through this it very generally searches possible methods by trial and error which
results in it attempting almost all available strategies and finding the ideal one as It continues
to learn. This often results in unconventional strategies that have optimal performance, this
technique has been hugely successful for other perfect information games such as Go [6].

2.2.6 Montecarlo Tree Search - MCTS

Montecarlo Tree Search in it’s pure form is a search method in which the algorithm randomly
attempts full random play-outs of the game from the available set of moves [12]. The result of
these play-outs are recorded and assigned to the initial move they stemmed from essentially
discovering the evaluation function as it plays. MCTS is an iterative search technique that
improves with time, as with more plays of the game the more statistical data the algorithm has
on each move it has previously tried. From this it can give a better estimate if that move is
likely to yield a win based on the win/loss record of previous plays.

This approach requires no knowledge of the game other than the rules, which means it is a
viable technique for games in which knowledge acquisition is not easy. It has also been proven
to be effective in games with large search spaces and high branching factors[3]. This does not
come without an overhead though, as there is no predefined knowledge required, for MCTS to
be successful it obviously has to perform an extremely intensive repeated search process. There
also are MCTS variations such as MCTS-minimax hybrid algorithms which use a shallow depth
minimax searches giving more informed starting point to the random search procedure [3]. And
more topically MCTS with deep neural networks which has proven unparalleled in the game of
Go [16].

Using this research paired with a detailed look into the game of Santorini and it’s rules in the
next chapter, the most appropriate technique will be selected. Keeping in my the limited
resources that will be available to me during this project.



Chapter 3

Santorini

For this project It was decided to that the Strategy board game Santorini would be a good
candidate for exploration. It is a two to four player game; the game has a basic form and can
also be played with the addition of ‘Gods’ which enforce extra rules that alter the potential set
of moves for each player. However, these rules can quickly imbalance the game making the
prospect of developing individual AI strategies for each God pairings an endeavour that was
beyond the reasonable expectation of this project. For this reason and for relative simplicity
within the scope of this project I will be looking at implementing the two player basic version
of the game. The reason the game was selected is that the rules are simple, yet the game
requires strategic consideration, each player has two builders which are aiming to ascend to the
3rd level of a building and are only capable of making one universal move, the limited set of
variables means that developing a strategy is not immediately obvious, from extensive playing
of the game it seems there are certain strategies that can be employed which have specific
counter strategies, this makes the strategy of the game rapidly evolve turn by turn. This led to
the question, would a minimax implementation with a general heuristic state evaluation be a
sufficient AI or would a more advanced technique be required to create an ‘Intelligent player’.

3.1 Setup and Rules

Santorini is a strategy game which is played on a 5x5 board, each player has two pieces called
“builders”, who’s allegiance is denoted by their colour - two blue and two red. The aim of the
game is to manoeuvre and build with your builders to be the first person to ascend with their
builder to a level 3 building. A player also loses if they are unable to move when it is their turn
an Example game state can be seen in 3.1.

Figure 3.1: Example late stage of a game. [7]

Before the game can begin, the Blue player places both of their builders onto the board, then
the Red player responds placing their pieces on two unoccupied spaces on the board. Blue then
moves first. Each move consists of two parts:
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• Part 1 - A builder may move one square in any direction, provided the space is not
occupied by another builder and they adhere to the movement rules.*

• Part 2 - Place a building level on an adjacent unoccupied space (including diagonal)

*A player may use a builder to build on any level but can only move to a space on the same
level or to a level of one above their current level – I,e 0 to 1, 1 to 2, or 2 to 3. A builder may
move down any number of levels. I.e 2 to 0. Players may also build “Domes” which can be
placed on a level 3 building in order to stop an opponent from ascending to level 3, essentially
removing that grid position from the game [2].

3.2 Strategy

Firstly, selection of piece positions on the empty board, there are a few variations here and it’s
not very clear if any give an obvious advantage see 3.2. Being within the central 9 squares gives
most versatility allowing you to react to opponents moves quickly but also move across the
board to build an attack. In contrast the corners and walls can be used as an effective means of
blocking, stopping the opponent from getting close enough to block.

Figure 3.2: Example opening positioning of pieces. [7]

As the game is quite open and straight forward this means strategies are constantly evolving so
it is rare that a player employs one strategy for a game and then successfully executes it. This
means strategies have to be re-evaluated after every move, as momentum in the game can
change very quickly.
Strategies Include:

• Gain and hold height: climbing up levels when possible is obviously key but also making
sure not to step down unless absolutely necessary, height is easily lost and hard to regain.

• Keep the opponent down: keeping the opponent on the ground by building multiple level
2 buildings.

• Trapping an opposing builder: block an opponents builder in a corner or against the side
of the board, surrounded by buildings 2 levels higher than them or by buildings with
Domes on them, this removes them from the game leaving a 2 vs 1 see.
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• Using a builder as a blocker: using the builder to occupy a space the opponent needs to
block you is a strong tactic.

• Edges and corners: using the edges and corners of the board to reduce the number of
ways opponents can approach to block.

3.3 Classification

Using the terminology researched and defined in section 2.1.3, Santorini can be classified as a
game with the following characteristics:

• Perfect information: All information in the game is available to both players as is the
history of their moves. Each player is aware of all the possible moves their builder can
make next.

• Two Player: The game can be played with up to four players, but this is actually two
teams of two so the most commonly played version and the one we are analysing for this
project is the two player version.

• Non-Cooperative: The game is played by two players both aiming to win, there is no
cooperation.

• Sequential: Moves are taken consecutively, each player has to wait for their opponents
turn to end before theirs begins.

• Deterministic: All moves in the game are defined and set out and their availability is
only influenced by previous moves made by players in the game. There is no element of
chance or randomness in the game.

• Zero-sum: , The outcome of the game or total payoff is always 0, if we score +1 and -1
for a loss. In Santorini there is always a winner and a loser so the total payoff is always 0.

3.4 Approach

From the research conducted in Chapter 2 along with the classification of the game as a result
of that research It seemed suitable to pursue an AI implementation based upon minimax in
conjunction with a heuristic state evaluation function for game trees of a limited depth. Ideally
the AI will be able to look several moves into the future and give an accurate estimation as to
which of the states will likely lead to a winning terminal state within a reasonable execution
time enabling it to select the best move possible at a given state of the game. Another option
could have been to attempt an AI implementation that incorporated machine learning,
something like MCTS or a reward based reinforcement learning algorithm which would learn
to play optimally over time without much alteration. However, the feeling was that MCTS
would not be feasible with the hardware available and a machine learning approach would be
too much of a "black box", which would give less insight into the strategies and intricacies of
Santorini, the idea being that developing the heuristic evaluation function would reveal key
features of the game that need to be considered to play well.
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The heuristic evaluation function will consist of a linear weighted equation of the form
discussed in section 2.2.2. This will be a collection of game features and corresponding weights,
as the material in Santorini is equal and usually doesn’t change for both players, the features
will most likely be a selection of positioning characteristics of the builders and buildings.
Players can In theory block in their opponent as in 3.3 however, this very rarely occurs unless
the opponent is either inexperienced or has made a blunder. Features to be investigated and
considered are likely; the height of the pieces and the height of the opponents pieces, looking
for states that facilitate elevating pieces along with states that reduce the mobility of the
opponent, and perhaps more specific situations such as forks for winning states - much like in
chess, or opportunities to deny a player from being able to execute a winning move.

Figure 3.3: Example of blocking an opponent piece creating a 2v1 builder advantage. [7]

A potential issue with this method is that I am no expert in the game of Santorini, and
although I have played the game quite extensively, a lot of the move selection feels quite
intuitive rather than methodical, meaning formalising promising features so far hasn’t been
straightforward. To try and identify some of these features as well as test minimax on it’s own
before adding state evaluation, a reduced board size version of Santorini will be implemented -
a 2x2 board with only one builder. This is in the pursuit of finding terminal states which might
have distinguishable characteristics that could be useful as features in the heuristic state
evaluation function.

But, before the heuristic evaluation function and minimax can be developed firstly a simple AI
implementation will be required to assure the game can successfully be played by a Human
against the AI. This will be a kind of Primitive strategy and the most basic decision making an
agent can make is picking randomly, it follows to improve this to a simple greedy strategy one
that picks a move based on a single criteria or heuristic. This will most likely be selecting the
move that gains the most height for a player. Then once a playable primitive AI has been
achieved the more appropriate minimax with heuristic evaluation function or advanced strategy
can be implemented. The function will be iteratively designed adding and combining distinct
sets of features with varying weights. Another consideration will be how far ahead the
algorithm will be able to look - the max depth of the tree and how it will be used and
potentially changed given the context of the game - early, middle or late game. Then, playing
the different iterations of the AIs against one another, this will hopefully identify the most
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effective strategy.

Finally the AI will be tested, initially this was supposed to be against a human novice player,
but in light of the current circumstances (see appendix B COVID), testing will instead be
carried out by playing the AI against the Novice AI computer difficulty in the Mobile
application version of Santorini [7]. Although not ideal this should help ascertain the degree of
success of the project.



Chapter 4

Game Design and Implementation

This chapter aims to detail the design choices that have been made in creating the human
playable Santorini game program as well as the AI, the reasoning for these choices and to what
degree they have been successful.

4.1 Design and Language selection

The first choice to be made was which language would be most appropriate for the
implementation of the Game. From simple analysis of the game and looking at the moves
available to each player it became quickly obvious that Santorini has a huge branching factor
with each move for a player having 40-70 possible distinct choices. With a typical game lasting
around 18 turns this would yield an estimated game tree size of approximately
5518 = 1.01× 1069) nodes. Considering the size of the game tree a language such as C or C++
may have been a faster option in terms of processing speed which would have been desirable for
the computation of the AI algorithms, especially creation and search of the game tree. But
with low level languages such as C and C++ memory has to be manually allocated and
collected, for a program that would be using complex data structures including recursive trees
this was be an avoidable source of errors, ones which would no doubt consume already limited
time. For this reason I turned my search to higher level languages like Python and Java both of
which automatically allocate and collect memory.

From a paradigm perspective, the game features and rules as outlined in Chapter 3 made it a
fairly straightforward decision to use an Object Orientated approach, as the components of the
game are structured and interconnected in a way which nicely lends itself to object orientation
rather than a procedural programming style. Finally I settled on Java as it had automated
memory handling, it enforces object orientation, and is has extensive documentation and online
support unlike newer alternatives such as Kotlin. The consideration of picking Java over a
language such as Python was ultimately down to my experience programming in Java is greater
than in Python, this decision was made to reduce the number of new technologies and concepts
being learned as the project would provide enough difficulty without unnecessary additional
potential sticking points.

4.2 Program Structure

As was previously touched upon the game consists of several main physical components those
mentioned in Chapter 3; the board, the builders, and the buildings, these would form the
fundamental basis of my program. Along with these would need to be an implementation of
two players and an Instance of the Game to hold all of the components and the appropriate
methods for them to interact. This lead me to the high level structure of there being a
SantoriniGame class, which would consist of two Players (also a class) as well as the game
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board which would be a structure made up of instances of a Tile class. Each player would have
two builder objects with which they would share a colour representing their Alliance, a red
team and a blue team. Both teams will enter starting locations for their pieces on the board
via co-ordinates in the form (X,Y) and the game will commence. The game will then follow a
simple loop pattern of, player enters the desired builder, then enters the desired location move,
check move validity - throwing error if invalid, update builder location, player then enters
desired build location which is checked and executed, then play is passed to the other player.
Once a move is made the game is checked to see if the move just played was a winning one.
Each class will contain the relevant methods for pieces to move and interact within accordance
of the game rules and perimeter of the board.

I first decided to abstract the board into the idea of it being a 5x5x4 structure, that consists of
4 levels 0-3 each of a 5x5 tile grid. So the board is a 3-D array of Tile objects, of the form
Tile[4][5][5]. Each Tile has three fundamental properties, represented by boolean variables. 1.
isOccupiedWithBuilding, 2. isOccupiedWithRedBuilder, 3.isOccupiedWithBlueBuilder. When
the board is initialised all properties of all tiles are set to false. This structure was chosen as it
encodes the location of the players pieces into the board which means almost all of the required
information for the evaluation of states is stored in the board, reference to the builderPieces is
not required. On top of this it also offers a simple solution to the printing of the board state
through the use of 3 nested for loops. This approach may have been over-complicated as in
hindsight it may have been simpler to implement the board as a 2-D structure with an
associated number for the level at which the occupying feature is at, this may have been able to
use less memory as the 3-D data structure will have incurred a potentially avoidable memory
overhead.

It is in the Player and BuilderPiece classes that the methods required to handle geographic and
building moves are implemented. Each BuilderPiece object has a set of possible moves that
correspond to the points of a compass, N, NE, E, SE, S, SW, W, NW, these are then filtered
down to legal moves, if a player enters an illegal move an Exception is thrown. A player then
enters the pair of compass points for the move and build, the board is updated, the game then
checks if the move has won the game for the current player terminating if it has, if not play
passed to the opponent. This process was adjusted for the AI so each move-build pair was
treated as a single entity for ease of use with minimax.

4.3 User Interface and Game Representation.

The User interface design for Santorini is quite straightforward as the board and pieces are not
too complex to represent. The game is played via a basic text based command line interface,
with each build level of the game represented by a 5x5 grid of empty tiles represented by empty
brackets [ ], when a player places their BuilderPiece on a tile the bracket becomes filled with
their initial e.g [J] and if they place a building it is the tile becomes a [+] indicating the player
should look up to the next level to see the tile availability. To avoid forcing the player to make
moves with (X,Y) co-ordinates on a zero indexed board which could easily cause confusion, the
points of the compass seemed like a more intuitive option as each part of the move consists of
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selecting an immediately adjacent tile. As mentioned in the previous section this means that
provided it is known which player’s turn all the information that is needed to evaluate the
game state is the game Board.

Figure 4.1: A 2x2 game text
representation.

Figure 4.2: A 5x5
game text repre-
sentation.

The display of the board state is not as humanly intuitive as the 3D animated interface shown
in Chapter 3 but, for the purpose of this project to have prioritised creating a detailed
graphical interface like that would have been a mismanagement of the time available to me. As
the priority and focus of the project is analysis and development of the AI the basic text
representation was completely sufficient.



Chapter 5

Developing the Artificial Player

Once the game was fully functional and playable by two humans, work could commence on
creating an AI, starting at the most basic goal - making a legal move given a state, then step
by step improving it to reach a more complex AI with improved performance. This chapter
outlines the incremental progress of that process.

5.1 Finding and representing the available moves

Before any kind of move selection could be implemented, first I needed to calculate all of the
possible move combinations for both of the AI player’s pieces, each having up to 8 possible
geographical moves and each of those new locations on average having 3-6 possible build
locations. This at the beginning of the game being as large as 70 unique combinations of
geographical moves followed by a build. Rather than represent each as a tuple of moves, for
example (Move - NE, Build - W) as a human player would make them in the game, it made
more sense to create an ArrayList of final board states that could be reached by executing each
of the possible move combinations from the current state. This is achieved in a function called
getStates which takes the current board state and the active player creates Deep copies of each
and then creates and returns an ArrayList of 3D Tile arrays (board states). It is from this list
that a decision can be made as to which state the AI decides to move to. The actual game
board is then updated to the board state picked from the possible list. As the moves are made
on copies of the board, the position of the AI player’s builder pieces are then retrospectively
updated from the new board state.

5.2 Primitive AI implementation

These are the most simple pure strategies possible to play Santorini, they consider making only
the next move with no consideration of opponents moves or future benefit to the player. They
are only intended as a starting point which should expose flaws in simple strategy, confirming
the need for more detailed consideration if we are to achieve a decent standard of AI.

Random Selection

The most basic approach to decision making is to make an arbitrary or random selection from
a collection of available possible options. It made sense that this would be the starting point
for the AI’s move selection process. In terms of Santorini this simply means picking one game
state from the list of calculated next possible game states. This obviously does not factor in
any calculation of payoff to either player, so the chances of the AI making a string of decisions
that actually might result in them consecutively gaining height with a builder to level 3 very
unlikely. Although not very useful for the primary decision making method, random move
selection is a helpful tool when deciding between moves that result in an equal payoff and must
be considered during the testing phase to ensure that when playing many repetitions of games
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between two AIs, in the case of states at a certain point in the game being evaluated to the
same payoff the AI does not select the first one every time which would result in the same
deterministic game being repeated. In practice, random selection performed very poorly
unsurprisingly and is definitely not a good option for a whole game strategy but, it has valid
use and should not be entirely disregarded.

Greedy - highest level

One step further than just randomly picking the next move is picking the move based on
obtaining the highest immediate payoff based on a single heuristic, for Santorini where getting
to level 3 is the goal, this would most naively be considered moving up to a higher level. This
however, would quickly be confronted with a set of states in which there is not option to move
up higher and once again the decision of which state to chose would be left to chance. The
greedy decision AI outperformed the random decision AI when played against each other but
very inefficiently, with the games taking far more turns than an average game.

The exploration of these rudimentary strategies highlight the need for many aspects of the
game state to be considered if the AI is to make a well informed move, not limited to the
features of the AI’s pieces but also considering how the opponent might be looking to play as a
rational player also aiming to maximise their possible payoff and win the game.

5.3 Advanced AI implementation

For the AI to progress to any decent standard of play it would need to consider far more than
just the best heuristic to pick the next immediate move. This meant identifying key features of
the game state which indicate a players weakness or dominance in a given position and
formalising these in the evaluation function, then using this in conjunction with minimax to
make an intelligent move. Once a collection of features had been refined. The process of
varying the weights of each component of the function to try and identify an optimal evaluation
function could begin.

5.3.1 MiniMax

The backbone and main focus for the advanced strategies as previously discussed is the
minimax function, at a high level pure minimax takes the current board state and the player
trying to maximise their payoff and from performs a depth first search of the whole game tree
passing back up the utility values from each of the terminal states of the tree. This is
unfeasible for the full game of Santorini due to the previously mentioned high branching factor.
Instead, minimax was first implemented on a reduced size version a 2x2 board with one builder,
and then once functioning it was adapted to include the required cut-off testing with a depth
limit that was needed for it to be usable in the full version of the game. The initial algorithm
was implemented based on the research conducted in Chapter 2, see Figure 2.5, it takes the
maximising player and the current board state, creating a list of possible moves from that state
(as outlined in section 5.1), performs each of the moves and recursively calls minimax on each
of the resulting states until the terminal states are reached. It then feeds the utility value back
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up the tree to the original call by the current player and returns a move that that would lead
to the highest utility value for the maximising player.
For the full board implementation the additional information of the maximum depth needed to
be passed, this is the depth which once reached would cause the heuristic function to be called
and return the integer value estimation by the heuristic function of the current state, this value
is then passed back up to the caller instead of the utility value. The move with the maximum
payoff can then be selected from all of the states passed back. For this to be possible an initial
feasible Depth limit needed to be established so it could be decided when to perform the cut-off
test and apply the heuristic function. To begin with the heuristic function was just set to
return an arbitrary value and tested at each depth to see how long the minimax algorithm
would take to return. The results can be seen in table 5.1.

Depth of Tree Number of Nodes Time to search (ms)
0 70 19
1 2898 383
2 101430 4561
3 3448620 170270
4 1.52× 108 >2 Hours

Table 5.1: A table with the explosion of nodes at each depth of the game tree from the starting
position of the game.

If testing two implementations of minimax using different heuristic functions against each other
the AIs need to be able to make move choices within a reasonable time. For an average game
for 2 AIs playing with Depth limit 2 the game takes 2-4 minutes, If only one AI is then set to
depth limit 3 and look one move further, each game then can take up to 30 minutes. Given
that each strategy will be played against each of the others 100 times, the time implication of
depth limit 3 make testing infeasible so the initial depth limit was selected to be 2.

5.3.2 Reduced Board MiniMax

Initially the thought process was that if I implemented minimax on a reduced board size
version of the game, the game tree would be small enough to execute an entire tree search
producing a collection of terminal states from which certain features of the winning player’s
board structure may be extracted and adapted for the features of the heuristic state evaluation
function. Although the algorithm successfully reached the terminal states for the smaller
boards, as can be seen in Figure 4.1 in Section 4.3 the game most often ended in a win by
stopping the opponent from being able to make a move. The same outcome was found from
playing multiple games on a 3x3 board with one builder also, the board was just too small.
Upon closer analysis it was then realised that for the 2x2 board the game was at least weakly
solved as the player who moves first is guaranteed a win.

This proved to be a frustrating conclusion that offered little insight into developing a successful
heuristic evaluation function, as in the 5x5 board full implementation with two builders each it
is almost impossible to defeat an opponent by blocking them from being able to move, the
number of options for moving is simply too great.
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5.3.3 Feature Identification

Due to the failings of the reduced board size experiment the features would have to be identified
and defined by extensive playing and studying of the game. Using the tactics discussed in
section 3.2 a list of positional characteristics that a player might consider when deciding on the
best move were collected and formalised. One thing that was kept in mind was applying the
lookup tables theory discussed in section 2.2.4 to Santorini, as there are certain specific
situations which have far greater payoff given a certain context (Feature 4 below), by encoding
this it means although the depth limit is limited to 2 it essentially gives minimax an extra turns
look ahead, without incurring the enormous overhead cost of calculating another whole level of
the game tree. Once finalised, these aimed to provide insight to the quality of the board state:

Feature 1: Combined piece height difference
This is the combined levels at which a players two pieces currently sit, minus the combined
levels of the opponents pieces.

Feature 2: Player vertical mobility
This is the number of adjacent tiles to the current player which they can move to, with tiles at
a +1 level being more desirable, and tiles of +2 or +3 level which cannot be moved on to being
undesirable. The opponent’s vertical mobility is subtracted from the current player’s vertical
mobility.

Feature 3: Centre square control
This is whether or not the current player has a builder on the centre square.

Feature 4: Level 2 threat
This is the number of adjacent +1 level tiles to a player’s builder if that builder sits at level 2
as it potentially signifies an imminent win. This needs to be considered separately to vertical
mobility as as level 2 it has far greater importance. Especially if there are two or more tiles,
this is a fork, only one can be capped resulting in a certain win for the current player. These
are positively scored for the current player and equally negatively scored for the opponent.

This produces the final heuristic function:

h(s) = w1 ×HeightDiff + w2 × V erticalMob+ w3 × Centre+ w4 × lvl2Threat

5.3.4 Heuristic state evaluation Function

For the heuristic function to be successful and give an accurate evaluation of a non-terminal
state it needs to value the game features to a fine enough granularity that the function would
return more than just one or two distinct sets of evaluated states so it is able to differentiate
between subtly better or worse positions. For this to be possible an appropriate range for the
score function and the features outlined in the previous section that make it up had to be set
out. It was decided that +1000 would be value of a winning terminal state -1000 for a losing
one. Then the individual feature point assignment could be calculated with this in mind.

Feature 1: HeightDiff - This heuristic looks at the all of the builder’s positions in the game,
assigning a value of 0 points if the builder is at level 0, 40 points if at level 1, 60 points if at
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level 2 and 1000 point for a state with the builder at level 3 with it being a terminal state. The
combined value of the current player’s builders minus the value of the opponents builders is
returned.

Feature 2: VerticalMobility - This heuristic looks at each builder and all of their adjacent tiles.
It assigns +5 points for a tile +1 level relative to the builder, -10 if +2 levels relative to the
builder and -15 for +3 and -20 points. This score is calculated for all builders and the
combined score of the opponents score is taken from the AI’s combined score. An example of
differing Vertical mobilities is demonstrated in states 3 and 4 of figure 5.1

Feature 3: CentreSq - This heuristic places a +10 point score for states with a current player’s
builder on the centre square. As can be seen in state 5 of figure 5.1.

Figure 5.1: 5 board-states, the potential future positions of a starting state with the the score
breakdown of each state. B is the blue player and J is the Red player.

Feature 4: Lvl2Threat - This heuristic evaluates a position with two or more +1 level tiles
adjacent to a builder which is already on a level 2 tile with +500 points as this will yield a
certain win. An example board state is shown in figure 5.2.
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Figure 5.2: Example of feature 4, a fork which will result in a certain win for Red (J)

It was noted that these point assignments already encode an inherent weighting to each of the
features, this was unavoidable as they were assigned based on personal judgement with not
much statistical data to support them. They were roughly tested so the AI made moves as
expected. For example as can be seen in states 3 and 4 of figure 5.1 if only scored on height
difference, both would be evenly scored forcing minimax to make a random selection between
them; instead the vertical mobility feature differentiates them scoring state 3 as a better
position as hoped due to the fact the opponent "B" has fewer options to ascend.

Another consideration is the weightings need to account for relative scores between two move
choices for example a builder would be expected to move up a level rather than surround
themselves with lots of +1 levels. They would need to be surrounded by 8 +1 Squares before it
becomes a random decision between moving up a level and taking that surrounded position.
That position is very unlikely to occur so the AI will almost always move up a level. However,
any misjudged discrepancy should be made negligible in the testing phase of the heuristics by
varying the weights.

5.4 Summary

After initial use of the heuristic function, it was clear that a function that was capable of
making rational decisions when playing Santorini had been achieved. When only the HeightDiff
heuristic was used with minimax it was beating the Greedy basic AI comfortably. All of the
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features could now be tested against each other to obtain evidence to confirm the most
successful set of heuristics for the AI. Once the best combination is determined a range of
weights will be tested to find the optimal values in the final Heuristic function, this final
function will be ready to be tested against the official mobile application AI to ascertain the
quality of the final AI implementation.



Chapter 6

Testing and Evaluation

Having all of the features necessary to create the final AI, it was essential to test each of the
individual components as they were added to interpret the affect they were having on the
quality of the final AI. Starting with the most basic informed AI - the greedy decision making,
each subsequent iteration would then be tested against a control AI, seeing if it achieves a
dominant win rate. Once the best collection of heuristic features are empirically justified, the
weightings of each individual heuristic will be adjusted to find the optimal combination of
weights. Once this is established the final AI can then be tested against the mobile application
AIs as a replacement test for the human testing phase.

6.1 Heuristic parameter Testing

The testing aimed to evaluate whether or not each modification made to the AI’s Heuristic
function was positively contributing to it’s overall quality. As there is no point scoring in
Santorini the method for evaluation is limited to the win percentage an AI iteration achieves.
Each of the following combinations has been tested by playing 100 games, the number of moves
of each game is also recorded for an added aspect of analysis aiming to provide a little more
context to the games. Although a win in less moves is not necessarily a better win, in terms of
the AI it does indicate a potentially higher quality of move selection.

Before the testing could begin, a neutral starting configuration of Builder pieces needed to be
selected so it is ensured that neither player has a clear advantage. To identify this I started a
game between two instances of the "Godlike" AI of the mobile game and recorded the positions
they assigned for player 1 and player 2, this was then kept the same for every play see Figure in
section . This definitely risked the potential for similar games to occur however, the size of the
branching factor meant that there is extremely high variation from the outset. The starting
player blue was always be using the AI with fewer Heuristics in it’s evaluation function. In each
of the following tests the weights of the heuristics were introduced at a value of 1.0.

Test 1 - Greedy Basic AI vs Height Difference Heuristic
This test was 100 plays of the Greedy Basic decision making AI against minimax with depth
limit 2 using only the heightDiff (Feature 1) heuristic in the heuristic evaluation function.

h(s) = 1.0×HeightDiff vs Greedy Height gain decision making

The outcome was a win rate of 100% in favour of the minimax heuristic AI with an average
game length of 27 moves. Although the minimax AI completely dominates the Greedy AI as
expected, the length of the game being almost 1.5 times the average game length indicates that
it’s move selection is far from optimal.

Test 1 proved that the Greedy basic strategy was completely dominated by the most basic
heuristic when paired with minimax, this indicated that basic strategies without consideration
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for the opponents moves are completely insufficient as an AI strategy in Santorini. For tests
after Test 1 the Height Difference heuristic with minimax depth limit 2 - HDH
(h(s) = 1.0×HeightDiff) will act as the control AI for the introduction of each additional
feature. HDH is the only available option as the control as none of the other features encourage
rational decision making on their own in terms of payoff towards achieving the main goal of
Santorini.

Test 2 - Height Difference Heuristic vs HeightDiff + VerticalMobility
This test was 100 plays of HDH AI against minimax with depth limit 2 using the heightDiff
(Feature 1) heuristic with VerticalMob (Feature 2) in the heuristic evaluation function.

HDH vs h(s) = 1.0×HeightDiff + 1.0× V erticalMob

The outcome was a win rate of 96% in favour of the minimax heuristic AI with an average
game length of 16 moves. This was a strong indicator that Vertical mobility plays a valuable
part in improving decision making by the AI.

Test 3 - Height Difference Heuristic vs HeightDiff + Centre This test was 100 plays
of HDH AI against minimax with depth limit 2 using the heightDiff (Feature 1) heuristic with
Centre (Feature 3) in the heuristic evaluation function.

HDH vs h(s) = 1.0×HeightDiff + 1.0× Centre

The outcome was a win rate of 96% in favour of the minimax heuristic AI with an average
game length of 17 moves. This was an unexpected result and shows the centre heuristic is
significant in improving the decision making of the AI.

Test 4 - Height Difference Heuristic vs HeightDiff + lvl2Threat
This test was 100 plays of HDH AI against minimax with depth limit 2 using the heightDiff
(Feature 1) heuristic with lvl2Threat (Feature 4) in the heuristic evaluation function.

HDH vs h(s) = 1.0×HeightDiff + 1.0× lvl2Threat

The outcome was a win rate of 90% in favour of the minimax heuristic AI with an average
game length of 17 moves.

Test 5 - Height Difference Heuristic vs HeightDiff + VerticalMob + Centre
+lvl2Threat
This test was 100 plays of HDH AI against minimax with depth limit 2 using all of the features
together in the heuristic evaluation function.

HDH vs h(s) = 1.0×HeightDiff + 1.0× V erticalMob+ 1.0× Centre+ 1.0× lvl2Threat

The outcome was a win rate of 98% in favour of the minimax heuristic AI with an average
game length of 18 moves.This makes sense and proves the optimal collection of heuristics is all
of them together.

The results of the Heuristic parameter tests against the control AI all established that each of
the features improved the decision making of the AI. This was the expected outcome of the
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tests as each feature was picked to improve the AI; however, the 96% win rate with the
addition of the centre heuristic was higher than expected. This was most likely due to the fact
it has a significant affect on evaluating states at the beginning of the game before it became
out-weighted; which meant the AI prioritised it in the opening few moves and this set it up to
win the game. In contrast the lower than expected win rate of 90% for the level2Threat feature
is indicative of the fact the opening selected is less strategic which allows the opponent AI to
get ahead early and go on to win even though it could identify the opponent was going to win.
A potential limitation of these tests were that there was no available external control AI to
bench mark each of the iterations against, they had to be tested against a stripped down
version of themselves. So unless features that scored bad states highly were added, the tests
were always going to yield clear wins for the heuristic function with more features. Ideally
there would have been a way of automating the play between my AI and the mobile game AI
to see how each iteration performed against the most basic mobile AI.

6.1.1 Heuristic weight refinement

With the optimal collection of Heuristics for the final AI justified, it remained to establish if
the inherent weighting assigned through scoring each feature was accurate or there was a more
optimal set of weights that could achieve a higher win percentage or an equal win percentage
with a lower number of average moves over 100 games against the control AI. To establish this
each weight would be altered and the outcome of wins/losses and moves per game over 100
games would be recorded for each feature weighting. Feature 4 - level2Threat was kept at a
weight of 1.0 as it had already been weighted accordingly and if adjusted it could contribute
evaluating a state over 1000 points which would exceed the value of a winning state, causing
the AI to pick a fork over a win.

The following table contains the weights for:

h(s) = w1 ×HeightDiff + w2 × V erticalMob+ w3 × Centre+ w4 × lvl2Threat

With w3 = 1.0 and w4 = 1.0.

w2 = 1.0 w2 = 1.2 w2 = 1.4 w2 = 1.6 w2 = 1.8

w1 = 1.0 98/2 (18) 95/5 (20) 90/10 (18) 91/9 (19) 89/11 (19)
w1 = 1.2 94/6 (18) xxx 93/7 (17) 92/8 (19) 90/10 (18)
w1 = 1.4 93/7 (19) 91/9 (18) xxx 93/7(17) 88/12 (19)
w1 = 1.6 95/8 (18) 94/6 (17) 95/5 (19) xxx 91/9 (18)
w1 = 1.8 97/3 (17) 95/5 (17) 90/10 (18) 96/4 (17) xxx

Table 6.1: Win/loss results for each pair of feature weights for f1 and f2 with w3 = 1.0 and
w4 = 1.0

From the results in table 6.1 it can be clearly seen that altering the weighting of the heuristics
feature 1 and feature 2 even slightly causes a drop in win percentages. Testing all of these
again with varying w3 values is unlikely to produce an outcome which yields any higher than a
98% win rate or a lower average move count. It was deemed this would be a waste of time as
each 100 games takes over an hour to run. So tuning commenced with features 1,2,4 fixed at
1.0 and feature 3 altered.
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W3 = 2.0

h(s) = 1.0×HeightDiff + 1.0× V erticalMob+ 2.0× Centre+ 1.0× lvl2Threat

This yielded results of 92% win in an average game length of 17 moves.

W3 = 1.5

h(s) = 1.0×HeightDiff + 1.0× V erticalMob+ 1.5× Centre+ 1.0× lvl2Threat

This yielded results of 99% win in an average game length of 17 moves. Values of 1.0-1.5 with
graduations of 0.1 were tried for w3, none of which improved on this win rate. From this
testing it has been established that the optimal weightings for the Final heuristic evaluation
function for the project AI are:

w1 = 1.0, w2 = 1.0w3 = 1.5, w4 = 1.0

6.2 Final Project AI vs Mobile AI Test

Unable to test the final AI against a Human player as first hoped (see appendix B), it would
instead have to be tested against the AI on the mobile application. For this I acted as a go
between the two machines inputting the moves between my program and the application. My
AI would play the lowest difficulty of the mobile AI in a best of 5 games, then if it won it
would play the next lowest difficulty. The mobile AIs are categorised as "Novice", "Modest",
"Skilled", "Expert" and "Godlike". The wins and the number of moves in each game will be
recorded.
Project final AI vs Mobile "Novice" AI

Game Moves in Game Win/Loss for project AI
1 15 Loss
2 20 Win
3 19 Loss
4 16 Win
5 14 Win

Table 6.2: Win/loss results final AI vs Novice mobile AI

Project final AI vs Mobile "Modest" AI

Game Moves in Game Win/Loss for project AI
1 16 Win
2 17 Loss
3 26 Win
4 19 Loss
5 13 Loss

Table 6.3: Win/loss results final Project AI vs Modest mobile AI

The above two tables 6.2 and 6.3 show the final project AI to have achieved a 60% win rate
against the "novice" mobile AI and 40% against the "modest" AI. These results to some degree
validate the fact that an AI capable of beating a human player has been achieved as these AIs
will not have been implemented to just act as irrational agents for people playing the game. A
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potential flaw in this testing system is that in some circumstances the mobile AIs makes moves
that appear un-human, in game 3 especially vs the modest AI the opponent made a string of
moves that seemed potentially irrational in terms of the goal of Santorini. It should be noted
that the mobile AI most likely uses a similar AI implementation with a set of heuristics. The
wins here could just mean that the project AI is specifically effective against the mobile AI but
not necessarily against human players.



Chapter 7

Conclusion

The final chapter aims to provide insight into the success of the project with regard to the aims
and objectives set out in Chapter 1. It also looks at the specific achievements and challenges
encountered in the project process, while reflecting on my own personal experience and lessons
learned.

7.1 Objectives and Aims

For this project to be a success, the fundamental objectives and aims set out at the beginning
needed to be attempted and achieved. These are reviewed and evaluated:

1. Perform in depth background research of Games and Game AI

The literature review in Chapter 2 explores a range of topics including the necessary
Game Theory to understand games formally. Along with this was a range of relevant AI
techniques that have been used for similar games. This materials relevance was then
analysed with Santorini in mind in chapter 3.

2. Develop a playable version of Santorini

As detailed in Chapter 4 a simple playable implementation of the Santorini was created
from scratch, an object orientated solution with a basic text user interface. After the
human playable version was functioning the implementation was adapted and extended to
be utilised with minimax and heuristic state evaluation.

3. Implement and test a reduced size instance of the game for analysis

In Chapter 5 section 5.3.2 the reduced board size version of Santorini was implemented
for analysis; however, this proved was a fruitless experiment. In terms of the objective
though it was successful and was an example of methodical work.

4. Develop an agent that can intelligently play Santorini

Chapter 5 documents a methodical and detailed approach to studying and implementing
the AI techniques researched in Chapter 2 resulting in heuristic evaluation function,
comprising of several different heuristics. Which when used together with minimax
proved to be quite effective as an AI player.

5. Improve the AI to be able to beat a novice player of the game

After the best combination of heuristics were justified and refined in section 6.1 they were
played and tested against the Mobile AI in section 6.2. As can be seen in the results the
final project AI this objective was achieved.

The main objective of this project was to create an artificial player using suitable AI techniques
that was capable of playing the game Santorini to the standard of a novice human player. This
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objective was successfully met and validated as the submitted program has an AI that has
proven that it can beat not only the most basic but also the modest AI implementation in the
mobile app version of the game. This proves the main objective has been met. Something I
would take from this project is that the necessary techniques required to create these types of
game playing AI depend on the Standard of the AI you are aiming to create, this project has
proven that established "traditional" techniques when appropriate can yield quite successful
results without a huge amount of resources. And though new AI techniques are effective, they
are not essential.

7.2 Reflection

To conclude I would say this project has been a success, it is by no means is without it’s
shortcomings but, overall the Aims of the project have been accomplished. I think one part of
this project which was lacking was the quality of the evaluation of the final AI, I struggled to
find a quantitative measure by which I could grade my AI, which meant my test results in
section 6.1 did not have a relevant graphical representation and were not as insightful as I
would have hoped.

One major challenge of the project would be the developing of the playable implementation of
Santorini had to be completed before minimax could be attempted which meant the design
choices made in the implementing of the game weren’t necessarily the most efficient and easiest
to adapt when it came to creating a functioning minimax. In particular the creation of the next
possible states due to the fact the builder moves are split into 2 parts. The solution was using
board states as the result of each move combination which then meant re-allocating builder
locations using the state rather than the other way round which was initially implemented.
This is an inherent difficulty of working on a project in which you are learning lots of new
concepts and theories as you are trying to implement them as you do not always interpret them
perfectly straight away. This results in cyclical periods of testing, programming and
re-evaluating implementation design. This is a difficult process to assign time to because there
is no way of accounting for issues and bugs which don’t become obvious until late into the
development phase, furthermore when working entirely alone you create a knowledge silo and it
can be difficult not having someone to discuss problems with which I think results in an overall
longer but probably more rewarding process.

Working on this project has been a truly new and informative learning experience but most
notably a challenge, something from the outset I was extremely daunted by. Now at the end, I
am pleased to say I am proud of what I have accomplished during the project. From this
project I have gained a new appreciation for the importance of in depth planning and research
when undertaking a project of this size and detail, as good preparation inevitably saves time
and stress in the long run, you might even say it has a greater long-term payoff.
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7.3 Future Work

7.3.1 Improving the current solution

One way in which the current AI could be made more efficient and quickly improved rather
than consider a completely different approach would be to implement alpha beta pruning with
minimax as it would result in a much more efficient tree search and permit the AI to look
further into the future of the game.
Further research into lookup tables or designing a lookup table for certain scenarios would also
benefit the heuristic function as when the Level 2 threat heuristic was added to the evaluation
function the AI was greatly improved. The addition of other such heuristics would no doubt
improve the AI.
Another improvement would be to implement a machine learning, neural network to find the
exact optimal setting for the weights of the individual heuristics, then the AI would be able to
learn and improve as it played more games.

7.3.2 Alternative Solutions

As reasearched in sections 2.2.5 and 2.2.6 an entirely alternative method could be implemented,
applicable methods would be something like Monte Carlo Tree Search or a Reinforcement
learning method.

7.4 Legal, ethical, social and professional issues

This project was focused around implementing public existing AI techniques that have been
extensively studied before. I created the game from scratch using no external Java libraries and
as it is for academic research purposes only I do not think it is infringing on any copyright laws
from the perspective of the game publisher. The data and information gathered with respect to
the game is in no way sensitive and could not be utilised in a malicious manner that I am
aware of. Initially there was to be a human testing section but this was replaced with a test
against another AI, removing any issues with regard to anonymity or the storing of personal
data of test users. Meaning overall, there are no major legal, ethical, social or professional
issues within this project in my view. The debate of the evolution of AI and it’s ethical and
social implications is far beyond the kind explored in this project.
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Appendix A

External Material

All source code submitted was written by me using no external libraries. Source code is
available at the gitHub URL: https://github.com/j-boreham/santorini-project
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Appendix B

COVID-19 Imapact Statement

The change in circumstances due to the COVID-19 pandemic not only directly hindered my
project as I was not able to complete the final evaluation of Human testing that I had initially
hoped but also definitely affected my ability to work on the project. Without the human
testing the evaluation process seemed a bit hollow, which definitely impacted my motivation
when this was realised. The work environment and resources available to me at home have not
been ideal, especially in comparison to the library. I think the project on the whole has suffered
significantly from the circumstances and I feel this project had more potential that I was
unable to fully maximise, It has been a frustrating conclusion to the end of my time at Leeds.
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