School of Computing °
FACULTY OF ENGINEERING UNIVERSITY OF LEEDS

Exploring Competitive Artificial Intelligence in Strategy Games:
Samurai

Jake Scaife

Submitted in accordance with the requirements for the degree of

BSc Computer Science (Artificial Intelligence)

2017/2018

40 Credits

ii

The candidate confirms that the following have been submitted.

Items Format Recipient(s) and Date

Project Report PDF Minerva (02/05/18)

Project Report Physical Copy (2x) SSO (02/05/18)

Software GitLab Repository Supervisor, Assessor
(02/05/18)

Type of project: Exploratory Software

The candidate confirms that the work submitted is their own and the appropriate credit has

been given where reference has been made to the work of others.

I understand that failure to attribute material which is obtained from another source may be

considered as plagiarism.

(Signature of Student)

(©) 2017/2018 The University of Leeds and Jake Scaife

iii

Summary

This report describes the process taken during my final year project to design, implement and
improve an artificial player capable of playing the board game Samurai. The artificial player
will be created with limited intelligence at first and over the course of this project, I will
explore different methods of allowing the artificial player to learn or apply more complex

strategies to maximise how competitive it can be when playing against a human player.

Samurai offers a number of challenges, due to the complexity of the game and the large number
of unique game states, which make the game interesting to study. Due to these challenges, a
portion of this report is dedicated to exploring the representation of Samurai in software: such
as enforcing rules and storing game states. From there, we will investigate iterative
improvements of heuristic state evaluation in an attempt to provide the best possible set of
heuristics which an artificial player can use to produce the most intelligent move possible, from
any position within the game. These final set of heuristics hope to provide an artificial player
the ability of defeating a human player and could potentially be adapted to games outside of
the scope of this project.

iv

Acknowledgements

I would like to thank Dr. Brandon Bennett for supervising my project, for giving me this
opportunity to explore an area of Computer Science that I am passionate about and for

pointing me in the right direction.

Contents

1 Introduction

1.1 Report Outline . . .
1.2 The Problem
1.3 Project Aim
1.4 Methodology

Background Research
2.1 Game Theory
2.1.1 Terminology .
2.1.2 Game Types
2.2 Artificial Intelligence

2.2.1 Heuristic Evaluation 0
222 Minimax e
2.2.3 Reinforcement Learning Lo
2.2.4 Hyper-Heuristics e
2.3 Samurai
2.3. 1 Setup
2.3.2 Rules e
2.3.3 Win Conditions

2.3.4 Project Scope

2.4 Summary

Game Implementation

3.1 Language
3.2 Class Design.
3.3 Graphical Interface .
3.4 Implementation . . .

Artificial Intelligence
4.1 TIrrational Player . .
4.2 Basic Player

4.3 Improving Heuristics

Implementation Testing
5.1 Game Implementation
5.2 Testing Basic Player

5.3 Improving Heuristics

U R W W

© © 0w N I N

10
10
11
11
11
12
13
13
14

15
15
15
17
17

21
21
21
23

CONTENTS

6 Conclusion
6.1 Project Outcome
6.2 Personal Reflection
6.3 Future Work e

References
Appendices
A External Material

B Ethical Issues Addressed

29
29
30
31

33

35

37

39

CONTENTS

Chapter 1

Introduction

Strategy games and competitive games in general offer a number of challenges to artificial
intelligence that can also be seen in a variety of different fields, as well as our everyday lives.
Even before the introduction of high-performance computing, numerous notable attempts, both
successful and unsuccessful, were made to develop computer programs which were capable of
imitating a human player at competitive strategy games, such as Chess[12]|. Since then, a wide
array of classic board games have been replicated digitally with the intention of constructing
intelligent algorithms that are able to defeat their human counterparts. Until relatively
recently, it has been a major challenge for computer scientists to develop artificial players for
strategic board games due to major limitations in hardware available to them. However, since
some of the classic board games such as Chess, Checkers and Go have been considered ’solved’
or have artificial players capable of beating the best human players, there has been an increase
in research into new ways of constructing artificial players as well as adapting the existing tried

and tested techniques for new and more complex competitive games.

1.1 Report Outline

This report is split into six main chapters which are further split into relevent subsections.
Each chapter describes a part of the iterative process I will carry out over the timespan of this

project.

1. Chapter one is an introduction to the project and will describe the problem that this
project wishes to solve. The chapter will also describe the minimum deliverables that this
project aims to achieve and the methodology that I will use to successfully achieve those

objectives.

2. Chapter two describes the background research conducted during this project in an
attempt to ensure the project is as successful is meeting it’s objectives as possible. Due to
the exploratory nature of the project the background research will be limited. However,
some research will be done into existing game theory and Al techniques as well as the

game which is the focus of this project.

3. In chapter three I will go over the implementation of the game in software. Details in this
chapter include the technologies used to represent the game as well as the graphical

interface created.

4. Chapter four covers the creation of artificial players and the artificial intelligence
techniques explored when constructing them. This section will discuss state

representation, move choice and strategies.

5. The testing phase of the project will be discussed in chapter five. This chapter will go

into detail regarding how the representations were tested and how the artificial players

3

4 CHAPTER 1. INTRODUCTION

were improved based upon previous results.

6. The final chapter, chapter 6, will provide a conclusion to the report, detailing how
successful the project was at meeting it’s original aims and objectives. It will also include

a personal reflection and any ideas of future projects expanding on this one.

1.2 The Problem

The scope of this project is to recreate the 1998 strategy board game Samurai digitally,
allowing for the exploration of developing an artificial player capable of imitating or even
surpassing a human player. Although relatively simple for a human player to understand the
rules of the game and develop simple strategies, Samurai is difficult to master due to the
complexity of the game, the difficult to track win conditions and the large number of options
available to the player. These attributes make Samurai a particularly interesting strategy game
to study as an artificial player with even limited intelligence could surprise a human player
with unexpected plays and allows for a variety of techniques to be applied and tested when

constructing the artificial player.

Despite Samurai winning multiple awards and having a passionate following, no notable
attempts have been made since the game’s conception to recreate the game digitally; I have
also been unable to find any research that has been conducted into constructing artificial
players for this game. For this reason, I hope to contribute some research over the span of this
project into both representing the game digitally in an efficient way and also constructing

artificial players that are competent at playing the game against a human player.

1.3 Project Aim

The aim of this project is to contribute meaningful research into the digital representation of
the board game Samurai and the construction of an artificial player which can make intelligent
moves equal to, or above, the skill level of a typical human player. During this project I will
investigate tried and tested methods of constructing advanced artificial players in well known

board games and attempt to implement and evaluate those methods for the game Samurai.

The objectives for this project are as follows:

e Construct a software representation of the board game Samurai, allowing for a full round

to be played as per the rules. (Defined in section 2.3)

e Construct a graphical representation of the game, allowing a user to see a play-by-play of

a round of Samural.

e Construct a simple artificial player capable of playing a round of Samurai from start to
finish.

e Investigate ways of improving the artificial player to increase it’s chance of victory against

a human player, or less advanced artificial player, using artificial intelligence techniques.

1.4. METHODOLOGY)

1.4 Methodology

When constructing exploratory software it is difficult to predict the amount of time a certain
task within the project will require and thus makes allocating time somewhat challenging. To
make time allocation easier, I decided to adapt an iterative approach, starting with a minimal,
functional piece of software and continuously improving upon it. This reduces the risk of not
completing the project objectives (Section 1.3) as a functional deliverable is produced as soon
as possible, with later improvements only enhancing functionality rather than implementing.
Considering this, I split the project into six parts, the first part being the report deliverable,
four parts corresponding to each major objective and a final part allowing for additional testing
and enhancements beyond the minimum deliverables. In theory, this would allow the report to
be worked on continuously as the project progressed, the main objectives met and then
additional contingency time available at the end of the project for further Al improvements or

quality of life features.

Due to the exploratory nature of the project, the software deliverable will be created with the
consideration that it is for use as a research tool only and not as a commercial tool. For this
reason, the amount of time allocated to testing, refactoring and user experience required for a
commercial tool will not be allocated for this project and the final software will only be

improved in ways which enhance the research potential of the software.

The Gantt chart displayed below (Figure 1.1) illustrates how I plan to allocate time across the
project. Due to my commitments to other modules, the majority of the project will take part
during the second semester where the workload is not as heavy. The first half will be dedicated
to background research and report preparation, with the second half being more focused on
developing the software. Fach square in the graph represents a week of time dedicated to the
project between November 2017 and May 2018, with weeks including Christmas and exam

periods not displayed.

Objective
Report Planning
Background Research
Intermediate Report
Report Write-Up

Game Implementation
Graphical User Interface

Basic Artificial Intelligence
Advanced Artificial Intelligence

Further Exploration and Testing

Figure 1.1: Project time allocation

CHAPTER 1. INTRODUCTION

Chapter 2

Background Research

The challenges faced when constructing artificial players are prominent in a number of fields
that are essential to making progress in our every day lives. Due to the huge number of
applications, both artificial intelligence and game theory have been the subject of a wide array
of exploratory research which could be invaluable in deciding the most practical, but also
meaningful, approach to meeting the objectives of this project. Despite this project concerning
exploratory software, it is important to first build a knowledge base that we can expand on
throughout this project so that we can maximise the impact and reduce time spend on
redundant research. For this reason, in this chapter we will discuss some of the existing
literature regarding game theory, artificial intelligence and also build an understanding of
Samurai so that we can approach solving the objectives of this project in the most informed

way possible.

2.1 Game Theory

The outcome of conflict between two decision making intelligent agents, whether acting
cooperatively to achieve the same outcome or competitively to achieve different outcomes, is an
essential study in a number of disciplines; including economics|3], politics[11] and biology|?], as
well as it’s precedence in strategy games and computer science[6]. Game theory details the
mathematical models which can be used to represent these conflicts, allowing an actor to
predict or observe potential outcomes of said conflicts depending on the decisions taken by an
agent within the conflict. These models can be used to generate optimal strategies for
particular conflicts assuming that agents will act rationally in an attempt to gain the best

possible outcome.

The conflicts modelled by game theory come in a wide range of types and representations that
can be adapted to different situations. We can explore these models and representations in an

attempt to find the best possible model to use when constructing an artificial agent for Samurai.

2.1.1 Terminology

Until this point, we have used general terms to describe components that make up a typical
strategic game. However, when discussing game theory, it is important to understand that
models studied in game theory can be used in situations where ambiguous terminology could
cause confusion. Thus, in order to discuss game theory and remove any possible ambiguity, we
must define exactly what a game is, as well as the components that make up a game, within
the scope of this report. Although a number of definitions exist, we will use the following

terminology|8|.

First of all, it is important to state that the word game used in the context of game theory

7

8 CHAPTER 2. BACKGROUND RESEARCH

references a situation where a set of independent agents agree to carry out moves based upon

an agreed upon rule set. Simply put, a game is described by a set of rules.

When the game is played, or a play is performed, we are referring to a single instance of the
game. A play is a series of moves which follow the rules of the game until an ending or winning

condition is encountered; the play is complete.

A state within a play describes the current allocation of game resources during a play. Each

state is unique to a game but a state can be repeated multiple times throughout a play.

A play consists of a series of moves, each of which describe the action performed that results in
a transition of states. At each state, a decision, or many decisions, are made which result in a
state transition. These decisions are referred to as a move. Each move produces an outcome,
which is typically in the form of another state. The payoff of a move refers to the value of the

outcome produced by a move.

A strategy details which move should be made depending on the current state. A winning

strategy typically aims to maximise the payoff of a series of moves.

Finally, a player is an agent involved in a play which makes decisions on which move to make
at any particular state within the play; in other words, a player enacts a strategy. We assume

that a player would act predictably with the goal of maximising their individual payoff.

2.1.2 Game Types

Game theory details a range of ways to categorise games which allows us to build models which
suit the characteristics of the game in question. Being able to define what type of game we are
dealing with, allows us to better suit the strategies we apply to the game and determine the
intelligence approach we use for constructing an artificial player. We will discuss some of the

game types that are common in game theory that may be applicable to this project.

Competitive

Competitive games consist of multiple players, each competing for a favourable outcome for
themselves or for their team. This can be in the form of defeating another player or gaining a
higher payoff than another player. A game can be both competitive and cooperative if the
game allows players to work together to defeat a common adversary and reach a win condition

without having to betray the cooperative partner|2].

Perfect Information

In order for a game to have perfect information, a player must have knowledge of the current
state of the play, the current state of each of the players and a knowledge of all previous moves
made throughout the play. If this is not possible, a game has Imperfect Information[5]. A

typical game with perfect information includes Chess, as all states are visible from the game

2.2. ARTIFICIAL INTELLIGENCE 9

board. A game with imperfect information includes poker, as a player does not have knowledge

of another players hand.

Simultaneous and Sequential

Two characteristics a majority of games possess is having either simultaneous or sequential
move order[1]. If a game has sequential move order, players take turns making moves, allowing
a player to make decisions based on an opponents previous moves. If a game has simultaneous
move order, all players moves are applied at the same time, meaning a player has no knowledge

of the move an opponent is going to make.

Zero-Sum

In many competitive games, the players are competing for an objective or other goal that has
to be won over or taken from another player. If when gaining an objective advantage over a
player, the other player receives a disadvantage of the same size, then the game can be
considered zero-sum. For example in Chess if a piece is captured, the capturer gains an

advantage of that piece whereas the captured gains a disadvantage of the same piece|7].

Many-Player

Almost all board games have a finite number of players and can be considered many-player or
n-player games. The number of players can range from single player (1 players) to any finite
number of players (n players)[9]. Competitive games are typically modelled as two player
games, regardless of the number of players. Games consisting of many players can be simplified
into two groups: allies and enemies, or players with complimentary goals and players with

adversary goals.

2.2 Artificial Intelligence

Artificial Intelligence has been used to solve a variety of different games with varying level of
complexity using a variety of different techniques. Here we will explore some of the common
artificial intelligence and machine learning techniques and discuss whether or not they are

appropriate for the project.

2.2.1 Heuristic Evaluation

Heuristic evaluation is a commonly used technique in calculating the payoff of moves within
games. A heuristic function sums weighted observations effecting the current state of a play
and uses those observations to predict the value of a move. This allows an artificial player to
choose the move with the highest possible payoff that can be made from the current state.
Heuristic evaluation is popular in complex games where the state space is large and a game tree
would require massive amounts of space, focusing on current observations allows the values to

be calculated quickly but at the cost of less complex strategy.

10 CHAPTER 2. BACKGROUND RESEARCH

This method is a sensible choice when considering the game Samurai. Due to having imperfect
information, it makes sense to determine the best possible move based upon the current state
of the game rather than making assumptions about unpredictable opponents. Additionally, the
large number of combinations of hands that can be placed in a large number of playable
locations makes the number of unique states incredibly high, making it slow and inefficient to

build game trees or state-action values for use in minimax and reinforcement learning.

For this method to work, we would have to perform tests on different heuristics and the
weighted values placed on those functions, to determine the best possible strategy given any

board state. Alternatively, we could use hyper-heuristics as detailed in section 2.2.4.

2.2.2 Minimax

Minimax is popular in two-player games with relatively low number of possible moves in each

state. The process involves maximising the possible payoff from a sequential game by selecting
the best possible move and assuming an opponent will also make their best possible move. By
limiting the moves available to an opponent, we can minimise the loss from a worst case

game|10].

Minimax could potentially be valuable when improving the intelligence of an artificial player in
Samurai. The value of each move can be calculated using a heuristic function and the best
possible payoff selected from those moves. The problem with this approach is that Samurai is
an imperfect information game and the minimax function would not have knowledge of the
other players hand and thus would have to predict which move an opponent would play. The
damage limitation would be minimal due to this lack of knowledge. This significantly reduces
the effectiveness of the minimax function and would likely see little-to-no improvement in

intelligence from heuristics alone with an increase in computation time and problem complexity.

2.2.3 Reinforcement Learning

Rather than providing the artificial player with a series of rules (heuristics) it can use to
determine the value of a particular move, it is possible to allow the artificial player to learn
their own rules based upon a predefined set of wanted or unwanted outcomes[4] By allowing the
artificial player to add or remove weight from a particular move based upon whether or not it
lead to a favourable outcome, it is able, over a large number of plays, to construct an optimal

strategy (often referred to as a policy) for winning the game.

The difficulty with this method is that the player would need to store values for making each
possible move in each possible state, otherwise known as a state-action function. Due to the
large number of unique states in Samurai and the large number of possible actions within those
states, simply the storage required to store this function, the computational time required to
search it and the number of plays required to populate it would be unreasonable without
significant simplification of the game. One simplification could involve ignoring the moves made

by an opponent and only assigning values to placing a particular tile at a certain location. This

2.3. SAMURAI 11

however would be an extremely naive approach and would likely result in worse results than

logic based intelligence.

2.2.4 Hyper-Heuristics

One way that reinforcement learning could be applied to the problem is by instead attempting
to learn the best combination of heuristics for a particular state or the entire play rather than
for each move. This would massively reduce the space and computational time required for
learning while also potentially improving the effect of our heuristic function by optimising the
payoff of different heuristic weighting. Using this method would allow the artificial player to
modify the heuristic functions based upon their success each time a play is made, rather than

manually setting the heuristics and running tests.

This technique could be very valuable to improving the artificial player and will likely be
explored during the ’further exploration’ aspect of the project, to further refine a competent

artificial player.

2.3 Samurai

There are a number of reasons why Samurai is the topic of this project, including the
complexity of the game and lack of current research into the game. Before we can begin
development of the game, we must explore the rules of Samurai and to what extent this project

will implement the game.

2.3.1 Setup

A play of Samurai is performed on a provided game board, which holds the perceivable current
state of the game. The game board consists of a varying number of hexagonal tiles of which the
majority are playable locations and the remaining locations are objective cities. The number of
hexagonal locations depends on the number of participating players; a minimum of two players

and a maximum of four players, with the board size increasing with the number of players.

At the start of the play, there are three main processes before a move can be made. The first
process includes distributing objective pieces among the cities on the game board. In a
two-player version of Samurai, 7 of each piece: Buddha, Helmets and Rice, are spread among
the cities. A city can contain either 1, 2 or 3 pieces depending on it’s size and may not contain
duplicate pieces. These pieces can either be sequentially distributed by the players, one at a

time, or can be allocated at random.

The second process is providing each of the players with twenty playable tiles, the tiles include:
e 1x 2-Buddha
e 1x 3-Buddha

e 1x 4-Buddha

12 CHAPTER 2. BACKGROUND RESEARCH

e 1x 2-Helmet

e 1x 3-Helmet

e 1x 4-Helmet

e 1x 2-Rice

e 1x 3-Rice

e 1x 4-Rice

e 2x 1-Samurai

e 2x 2-Samurai

e 1x 3-Samurai

e 2x 1-Ship

e 1x 2-Ship

e 1x Ronin

e 1x Tile Exchange

e 1x Piece Exchange
These tiles make up the player’s deck. A player’s deck is private and can not be seen by other

players. An explanation of the tiles can be found in section 2.3.2.

Finally, five of the tiles in each players deck are removed and placed into the players hand. This
can be done randomly or the player can be allowed to choose depending on the rules in play.
The tiles that make up the players hand are the only tiles that are available to be placed on the

game board, tiles in the deck are not playable. The hand is also kept secret from other players.

2.3.2 Rules

A player is chosen at random to make the first move, this player can place any of the tiles in
their hand on an unoccupied playable location on the game board. If the tile is a ship type, the
tile must be placed on water. There are two types of tiles that a player can place: slow tiles
and fast tiles. Fast tiles include the tile exchange, piece exchange, ronin and ships. All the
other tiles are slow tiles. The player can place a maximum of one tile per move and a minimum
of zero tiles per move. Placing a slow tile on the board adds one to the total tiles placed in the
move, placing a fast tile does not increase the total tiles placed. Thus, a maximum of one slow

tile can be placed and any number of fast tiles can be placed.

Tile exchange tiles can only be placed in playable locations where a tile belonging to the same
player has already been placed. The player then selects a second unoccupied location. This
move places the tile exchange tile in the location which was previously occupied and moves the

tile that previously occupied the location to a new location.

2.3. SAMURAI 13

Piece exchange tiles can not be placed on playable tiles but allow the player to switch the
pieces which occupy two cities. For example a Buddha piece in city one could be switched with
a Rice piece in city two. The piece exchange can only be applied to cities which are not already

won and cannot move pieces into cities where there would be duplicate pieces in a single city.

Each tile has an associated influence which it applies to city pieces that are adjacent to the
location a tile is placed in. For example a 3-Rice tile applies 0 influence to adjacent Buddha
pieces, 0 influence to adjacent helmet pieces and 3 influence to adjacent rice pieces. When all of
the adjacent playable land tiles surrounding a city are occupied, the city is considered
surrounded and the player with the most influence applied to a piece within that city wins that
piece. The player who wins the piece does not have to be the player who placed the tile to

surround the city.

Once a player has placed the tiles they wish to use in a move, the same number of tiles the
player removed from their hand are replenished from the players deck. The next player can

then make their move continuing from the previous player.

2.3.3 Win Conditions

A play of Samurai ends when all of the cities have their adjacent land tiles occupied. When this

happens, there are no more pieces to win and thus no further purpose in continuing the play.

A winner is calculated by the amount of pieces they have captured from cities on the game
board. If a player has won more of a specific piece than any other player, they have won the
support of the caste represented by that piece. If a player wins the support of two castes, they
automatically win the play. If players capture the same number of pieces of the same type, the
support for that caste is tied and not won by any player. The player who has won the support
of the most castes wins the play. If two or more players have won the same number of castes,
the winner is the player who has won the most pieces which are not pieces representing the
caste that they won the support of. If this number is still equal, a winner can be found from

the total number of pieces captured.

2.3.4 Project Scope

To be able to dedicate more project time and research into building an artificial player for
Samurai, the scope of this project will not cover all different combinations of playing Samurai.
There are number of different game modes available, starting conditions, win conditions and
variable number of players available to choose from that would make the scope of the project
far too wide. Numerous approaches to artificial intelligence would need to be considered for the
different game modes and testing the skill of artificial players across all of the game modes
would require a significant amount of testing to confirm any results. Additionally, the
implementation time would be significantly increased for the game representation, meaning less

time spent exploring artificial intelligence.

With this in mind, I have chosen to base the Samurai implementation on a two player version

14 CHAPTER 2. BACKGROUND RESEARCH

of the game. This massively decreases the number of unique states and removes a large portion
of the unpredictability present in the moves of opponents: an artificial player would only have
to counter the moves of one player rather than three. In chapter six I discuss the possibility of
future work and would be interested in seeing further research into Samurai with additional

players with the hope that findings in this report would scale.

Additionally, the game setup covered in this project will be distributed at random rather than
allowing players to distribute pieces and select hands. By making this random, it reduces the
complexity of the problem without causing adverse effects to the intelligence of an artificial
player. If the player is able to place pieces, it is likely to result in common predictable game
starts and if a player is able to select their hand, it is likely that starting hands of opponents
will be predictable. For these reasons, artificial players created with random game starts will be
at minimal disadvantage when playing with a chosen game start and justifies the huge

reduction in implementation complexity.

Finally the game mode that I will implement in this project is domination game mode. The
two modes available, classic and domination, both have similar rules and win conditions but
play out slightly differently. Domination is by far the most popular game mode and the more

interesting to explore.

2.4 Summary

From the background research discussed within this chapter, it is possible to describe Samurai
as a competitive, sequential game with imperfect information. The game is modelled as a
2-player, n-player game that is zero-sum. For the purpose of this project, we will explore the
use of heuristic evaluation for the basis of the artificial player with the possibility of exploration

into hyper-heuristics.
e Samurai is competitive: Players compete to capture the most city pieces in order to gain
the support of castes.

e Samurai is sequential: Players take turn making their moves, with the opponents previous

moves visible to them.

e Samurai has imperfect information: Players do not know the current state of another

players hand.

e Samurai is zero-sum: A piece captured by one player translates into an exact

disadvantage to the remaining players.

Chapter 3

Game Implementation

The first half of this project concerns designing and implementing the game of Samurai
digitally, allowing a full play of the game to be performed as set out by the rules in section
2.3.2. In addition to this, a graphical interface should be created to allow the play to be seen
move-by-move by the user. These major implementation aspects have to be performed before

any research can be conducted into building an artificial player.

3.1 Language

The first choice when considering implementing the game in software is what language and
technologies are available to solve the problem. Due to the nature of the project, the weight
placed on technology choice is not as high as if the end software was required to be of
commercial standard, but still needs to be considered to ensure the implementation is suitable

for research.

Due to the fact we will be working with user interfaces, it seemed sensible to consider object
oriented languages, giving the added benefit of modular and abstract code. C++ is a good
choice due to it’s heavily documented Qt libraries for constructing graphical user interfaces and
the low level nature of the language allows for efficient implementation, potentially allowing for
faster or more efficient artificial player testing. Java is also a good choice, a compiled language
with a number of options for constructing graphical user interfaces and a strong focus on object
oriented design. The language I will be using for this project however is python, particularly
python 3. Python 3 allows for object oriented approach with good support for graphical user
interfaces. In this case, PyQt5 is likely the best option for the graphical user interface due to
it’s extensive documentation and operating system native design. The main advantage of
python is it’s simplistic syntax, allowing for less time spent on the implementation aspect of
the software and more time spent on the actual research. Java is substantially more verbose
and C++ is a much more complex language; if the project was designed for commercial

standard I would more likely use Java with JavaFX instead.

3.2 Class Design

Graphical user interfaces and games in general are very good candidates for object oriented
design due to their object based modular nature rather than procedural. For this reason, I will
detail some of the classes that will be required to build our application so that a full play of

Samurai can be performed.

The first and most important class to consider is a main Game class. This class will handle the
game setup, the main loop, and the checking of win conditions throughout a play of the game.

This class is responsible for keeping track of the state of the game, including the playable tiles,

15

16 CHAPTER 3. GAME IMPLEMENTATION

cities and the players involved in the game. Some of the main methods in the Game class
include updating the status of cities, checking if they are surrounded and allocating pieces to a
player who have won them. The class should contain a main game loop, which loops until a
win condition is met, allowing players to place tiles on the game board sequentially. This of
course means the class also needs a method for checking win conditions, this would check the
state of the game and determine is the game should end, if so a winner is found. The Game
class should keep instances of each Player so that it can communicate with them as well as the
game board, or representations of the game board so that it can communicate with it. A player

is a part of a game. A game board is part of a game.

Another major class is the Player, this can be an abstract class which needs to be specifically
implemented /extended by other players, but holds the main common functionality of a player.
This class should setup the deck and hand of the player, with a method to ensure the hand is
always supplied with tiles from the deck. The player should keep track of its score and
influence so that it can make plays based upon the current state of the game. The player
should also store an instance of the game so that it can fetch information about the game and
also communicate directly with the game. The player should have a method which can be
called by the main game loop which returns the move that the player wishes to make. For this,
the player should have a method for getting the possible actions in a state depending on their
current hand tiles. It should also have a method for choosing which of these actions should be

chosen, depending on the player.

The Player class should be implemented specifically, with specialisations including a random
player, which overrides the method for choosing an action, replacing the functionality with a
random move selection. This basic artificial player shows no intelligence but allows a play

through of the game to be made and allows us to test the implementation works as expected.

Another main aspect of the game are tiles. There are playable tiles (locations) and tiles which
can be placed by the player. These tiles can be represented with the same class, each tile
should store it’s type, location on the game board and the tiles owner. It would also be possible
for only the tiles on the game board to be represented this way, with players simply taking
ownership of these tiles and applying a value to them equal to the tile they wish to place. In
this case, it is also important to store what terrain the tile is located on with respect to the

game board, either land or water tile.

Cities will also need to be represented in the game. Since they have different attributes and
functions to basic playable tiles, they should be modelled in their own class. Cities should also
store their location on the game map as well as the pieces that have been assigned to the city. It

would also be useful for a method or attribute which describes if the city is surrounded or not.

3.3. GRAPHICAL INTERFACE 17

3.3 Graphical Interface

The complexity of the game makes it important to be able to visualise the current state of the
game. For this reason, we will be creating a graphical interface that displays the game board
with text representations of cities and tiles placed. The graphical interface will be produced

using PyQt5 and the main implementation will be structured around a game board class.

The user interface at this stage of the project does not require user input, although the user
should be able to continue the game to the next players move using input from the terminal, to
keep the implementation simple. The main complexity in the user interface is recreating the
hexagonal grid pattern this game uses. To do this, a hexagon class can be created which
constructs a polygon from six points distributed evenly around a circle. These hexagons can
then be iteratively overlayed to create our game board. Each of the hexagons will be coloured
depending on their type, cities being coloured grey, land being a sand colour and the water
being blue. Only locations which are playable will have a hexagon outline around them, with
unplayable locations being rendered but without the outline. We are using the 2 player game
board which is a 14x13 grid including none playable locations. Constructing the game board in
a square grid helps with both positioning of the hexagons as well as being able to use an XY

coordinate system when referring to a specific location.

The locations within the game board are rendered based upon a seperate map, represented by
an array of numeric codes. These numeric codes represent the type of location: non-playable,
water, land, city etc. The game board class simply iterates over this map, assigning the hexagon
with the same coordinates as the item of the array the type represented in the array. This
potentially allows for expansion to larger maps or allows the map to be very easily changed, the

game board could be changed drastically by simply changing the values in the map array.

The game board also needs to handle the placement of tiles on the map by players. When a
player takes ownership of a location, the tile is assigned a colour associated with that player
(red or green). The hexagon also gains a text descriptor so that the user of the application can
see the tile that has been placed. Cities also have text descriptors which indicate the pieces
within the city: B - Buddha, H - Helmet, R - Rice. An example of the interface can be seen in
figure 3.1

3.4 Implementation

When implementing the game in python I tried to follow the design as closely as possible,
refactoring the design when necessary. The game class as expected holds the current state of
the game. This is implemented using two arrays: one array contains all of the playable tiles, or
tiles objects which can be assigned values. The second array contains a series of city objects,
each representing a city on the map. The state of the game is determined by these two arrays
as the current state of any play can be determined by the state of the cities and the state of the

playable tiles. At the game setup, these lists are populated using the game map detailed in

18 CHAPTER 3. GAME IMPLEMENTATION

Figure 3.1: Graphical representation of a finished play

section 3.3 by methods within the game class. Once the state of the game has been initialised,
the graphical user interface is drawn/updated and the pieces allocated to cities. The pieces are
allocated to cities using a simple random number generator, allocating a piece depending on

the number that is produced.

Once the game is setup, the main game loop starts and is provided with two player objects.
The player objects are created independently of the game so that players can exist between
multiple games (best of 3, etc). A player is selected at random to go first and are prompted for
a move. Each type of player inherits a generic method detailed in section 3.2 which generates
all the possible actions given the current state of the game board and the players current hand.
The rules of the game are enforced through this method, with illegal moves not being generated
as possible actions. A player may only choose one of the possible moves and thus must abide

by the rules of the game.

The possible actions are generated by combining each possible tile that can be placed with each
possible location it can be placed in, with locations being items in the game’s playable location
array. A move is represented by the value of the tile followed by the location the tile should be
placed in. An example move includes [2, 15| which would represent placing a 3-Samurai tile in
the 15th location in the array. Tile exchange tile and piece exchange tile possible moves are
calculated separately, with tile exchange tile being represented with an extra destination
location (example [15, 1, 20]). The first value is still the value of the tile, the first location is

the tile to move and the second location where to move the tile to. Actions generated for tile

3.4. IMPLEMENTATION 19

exchange pieces are only done so on friendly tiles. Similarly, piece exchange tiles can only be
activated on cities and actions are generated for all possible cities which can accept a trade

without causing duplicate pieces on one city.

When all of the possible actions in the players current state have been generated, it is up to the
player to choose which move to make. For the purpose of this implementation, a random player
was created which simply takes all actions and chooses one at random with no further
intelligence. Depending on the action taken, if the player is still able to place tiles then they
are prompted for an additional action, until the player can no longer place a tile. The player

can of course choose not to place additional tiles.

These moves are then passed back to the game loop, which updates the state of the game and
communicates with the graphical interface causing an update. The state of all of the cities is
checked, looping through cities which are not surrounded and determining if they are still not
surrounded. If all of the adjacent tiles are occupied then the city is flagged as surrounded and
the pieces allocated to the appropriate player. If all of the playable locations which are land are
filled, the game is ended. The winner is then calculated using the win conditions detailed in

section 2.3.3.

20

CHAPTER 3. GAME IMPLEMENTATION

Chapter 4

Artificial Intelligence

Now that the rules of the game have been implemented, we can move onto constructing an
artificial player. The method that will be used as described in section 1.4 will be an iterative
approach, first starting with the most basic player and improving it’s intelligence based upon
results from testing. All of the types of player discussed in this chapter are specialisations of
the existing Player class, each incorporating different methods of selecting a move from a list of

generated possible moves.

4.1 Irrational Player

At the beginning of a players turn, each move that is both possible and valid according to the
rules of Samurai are calculated based upon the current state of the board and the tiles the
player currently has access to in their hand. Since the player has access to all of the possible

moves, the player simply needs to choose one of those moves based upon its value.

To start with, we need to prove that there exists a strategy which is superiour to irrational,
random play. In such a play, a player will not consider the payoff of a particular move and will
treat each move equally; essentialy playing at random. If a strategy exists that can beat
random play then we can explore the heuristics required to enact such a strategy. Otherwise, a
different approach would be required for creating an intelligent player. In theory, due to the
strategic competitive nature of Samurai, a player which is irrational and does not make moves
in an attempt to win the game should be easily defeated by a player who considers the payoff
of a particular move but also should win roughly fifty percent of games played against another

irrational player.

To implement this player we can treat each of the possible moves equally, using python’s inbuilt
random library to make a random choice from each of the moves. This player would almost
certainly be hopeless against a human player or any rational computer player, but is an
essential step in shaping the development of a more advanced player and ensuring the software
implementation works as expected. It should also be noted that an irrational player, although
not trying to win, is also not actively trying to lose, it will be interesting to see during testing
how the irrational player holds up against some of the more basic heuristics and will help us
determine if a particular heuristic is worth implementing depending on it’s ability to add

rationality to a particular move.

4.2 Basic Player

The aim of building a basic player hopes to show that by adding simple rationality to the
moves made, simple improvements in strategy can significantly improve win percentages

against a player who chooses moves irrationally. The basic player represents a player who

21

22 CHAPTER 4. ARTIFICIAL INTELLIGENCE

understands the rules of the game and how to use those rules to make moves which result in a
payoff for the player, instead of choosing a move at random. With this player we hope to also
show that competence in playing the game can be improved by adding additional heuristics as
well as experimenting with their influence on the final payoff. A basic player will not
necessarily consider the moves of their opponent in a strategy and will simply aim to collect the

highest possible payoff with minimal knowledge of the game state.

The approach that we will take to calculating the payoff of each move is by associating a
numeric value to each tile in each playable location. At the beginning of each move, the player
will assess the current state of the board and determine the payoff of playing each possible tile
in each possible location. This results in an array of dimensions (playable area * unique tiles)
or in our case (74 * 17). This area can decrease as the play progresses due to locations being
occupied and tiles being used, meaning that values for those tiles and locations not needing to
be calculated. With these values calculated, each possible move then has an associated value;
the move with the highest numeric value has the highest payoff and is chosen as the players

move. If multiple moves have the same value then one of those moves is chosen at random.

The obvious first step when applying heuristics to mimic a beginner player is assigning values
to moves which will add influence to a city in hope of capturing pieces from that city. The
main aim of the game is to win the support of castes using those pieces and so the objective of
a beginner should be to capture the pieces. This means that for example placing helmet tiles
next to a city which only has a Buddha piece to capture should have a lower associated value
than placing that same helmet tile next to a city with a helmet piece. The second of those
options contributes payoff to the player by moving them closer to winning the game and thus
should have a higher value associated with them. This value can also be changed depending on
the amount of influence a tile enacts on the city, with a four-influence tile having a higher value

than a 3-influence tile due to it’s higher probability of winning the piece.

If a city is surrounded, all adjacent tiles are immediately given negative values with a negative
value being attributed to moves which would cause a disadvantage to the player. This allows
the player to avoid situations where placing ships next to cities which have already been
captured would cause the player to waste a tile, thus reducing it’s chance of victory. All moves
start with a negative value and values are only added to moves that are directly in the interest

of the player.

These simple heuristics maximise the probability that each move made by the player will be
rational, improving the players chances of victory. More heuristics will need to be added and
refined before the player is capable of playing competently, however this first step aims to prove

the value of developing a strategy for playing Samurai.

4.3. IMPROVING HEURISTICS 23

4.3 Improving Heuristics

The best way to improve upon the simple heuristics are to add more functions which influence
the payoff of a particular move. This involves discovering new ways to improve the current
strategy. Each time a new heuristic is added or an existing one modified so that the win
percentage of the new experimental artificial player increased and the win percentage of the
baseline player decreased, the causing heuristic is likely improving the strategy of the player.

The experimental player can then become the new baseline player and the process repeated.

The first factor that builds a good strategy is the ability to calculate the payoff of a particular
move based upon the moves made by an opponent. In Samurai, it is important to consider the
influence both yourself and enemy players are enacting on a city, to give you the best chance of
both using your pieces efficiently but also not wasting pieces. For this reason, I added an
additional heuristic which reduced the predicted payoff of a move if the difference in influence
between the player and their opponent is too great. The value of placing a tile adjacent to a
city that has a large amount of influence either by an enemy or by your own tiles is decreased
by half with this new heuristic as the chances of a tile placed there being wasted is
considerable. This results in better informed moves due to taking into consideration enemy
plays but also creates a better balance when capturing pieces. In order to win the game, it is
not how much influence but how many castes are won that is most important, so spending

additional valuable tiles securing a city that is uncontested results in bad strategies.

Another major heuristic which improved the win rate of the artificial player significantly is
adding weight to a move if that move would cause a city to be surrounded. It is common in
Samurai to surround cities as quickly as possible, especially if you have an influence advantage
over the city. Surrounding cities results in pieces won, which provides you with an advantage
and your opponent a disadvantage. At first I added additional weight to locations which are
adjacent to cities based upon the number of tiles required to surround them. If a city only
required one more placed tile to surround the city, that tile would have maximum weight, with
cities requiring more tiles to surrounded them having proportionally less. I was able to observe
faster piece taking with this heuristic, although it did seem to hurt in the late-game phase of a
play due to a player spending their valuable, high-influence tiles surrounding cities they are

already certain to win.

To further improve on the previous point, I added complexity to this heuristic, only adding
positive weight if the player will win the pieces within the city if the city is to be surrounded.
The weight of a move if the opponent was likely to win the pieces when the city was
surrounded was reduced, forcing the opponent to spend their own tiles surrounding a city if
they wish to win the pieces, making them weaker when it comes to contested cities.
Additionally, I attempted to add or remove weight depending on the tile used to surround the
city. Using a high value tile to finish surrounding a city when it could be surrounded with a
lower value tile is a poor move and would cause weakness in the late game, so prioritising lower

value tiles when the influence is not important helped increase win statistics.

24 CHAPTER 4. ARTIFICIAL INTELLIGENCE

When implementing the artificial player, considering heuristics for the special pieces is not easy
due to the complexity of the rules regarding these pieces and their special use cases. It is rare
that much use can come from the special pieces if used randomly but can be powerful if used
correctly. Unfortunately these special cases are difficult to predict. I was unable to produce a
heuristic that made effective use of the piece exchange, however the tile exchange
implementation did help improve win statistics. I calculated the payoff of using a tile exchange
by maximising the value of a piece being moved to a new location and minimised the value of
the piece in the location it is currently in. This would provoke situations where tiles for
example around surrounded cities would be moved to locations that could be highly beneficial

to the player and could potentially turn the tide of the play.

Once the base heuristics were determined, I was able to experiment with different combinations
of weightings and observe how they effected win conditions. It is clear from the experiments in
chapter 5 that many of the heuristics are not independent and require fine tuning to produce
the best possible strategy. This would certainly be a case where the use of hyper-heuristics

would be valuable to progressing the player further.

Chapter 5

Implementation Testing

To ensure that the implementation worked as expected, the rules of the game were enforced
and to improve the artificial player, it is important to run periodic tests throughout the
project. This chapter will discuss the observational and mathematical tests performed on the

implementation and the results of games between different artificial players.

5.1 Game Implementation

Testing the implementation of the games and rule set is essential before any progress can be
made into the artificial player. Without a good foundation, the player would likely develop
faults or provide inconstant results. I used the random player described in section 4.1 to carry
out a full play of the game. I analysed each of the moves made on the graphical interface,
ensuring that each move was within the rules. Once I had determined that the moves being
made were valid, I used the software to perform 1000 plays of the game. After some minor
fixes, the software was able to perform all 1000 plays without any errors or issues. I used print
statements to display the scores of each player and their influence at the end of each play and
was able to calculate their score from the graphical interface and compare it to the printed
version. From these scores, I was able to calculate the winner and also compare it to a printed
version. At first of course, there were some issues, however these could be easily identified and
fixed with the methods described. The graphical user interface while being developed could be

tested visually and compared with expected traditional game boards.

The user input supplied to the application in the form of command line arguments and
terminal input was tested using boundary cases. The input is kept as simple as possible and
have clear instructions on how to progress. If incorrect command line arguments are passed to
the application, a helpful prompt is displayed to assist the user. Plays of the game are
progressed by providing user input of any form, although the user is prompted to press the
enter key. Plays can be skipped by entering S and then pressing enter. This allows plays to be
viewed both move-by-move or many plays at a time, making evaluation of win percentages

more efficient for the user.

5.2 Testing Basic Player

The first testing of the artificial player was the irrational player. I wanted to carry out some
tests using this player to identify a base skill level that could be improved upon. Additionally,
testing this player can be used as proof that the game rules are implemented correctly if the
random players have roughly fifty percent win rate over a large sample of plays. Throughout
the testing, I performed 3 sets of 200 plays and evaluated those plays into a win percentage. an
increase in overall win percentage likely represented a positive strategy iteration. The results of

testing the random player can be found in figure 5.1.

25

26 CHAPTER 5. IMPLEMENTATION TESTING

Player Test One | Test Two | Test Three | Win Percentage
Random 1 89 101 102 48.6
Random 2 111 99 98 51.4

Table 5.1: Random player vs. Random player

Once this base had been established, testing the player with a single heuristic function was
next. This player relied on simple tile association, applying higher weights to tiles placed next
to cities which could be influenced by those tiles. This test hoped to prove that a strategy
exists which could defeat irrational play as well as developing the first of our heuristics. The
test results can be seen in figure 5.3. The test shows that although the strategy is simple,
rational play defeats the irrational player almost every time, proving our hypothesis. Since this
has been established, we can explore additional heuristics and modifying existing heuristics in a

hope to improve the artificial player’s strategies.

Player Test One | Test Two | Test Three | Win Percentage
Random 1 1 2 0.7
Experimental 199 199 198 99.3

Table 5.2: Random player vs. Tile Association

5.3 Improving Heuristics

Since our hypothesis has been established, we can focus on testing additional heuristics and
observing their outcome. Since the basic experimental player increased the win percentage
significantly, this player becomes our new baseline player (base). The next step in the
development iteration involved the exploration of heuristics to weight tiles based on a cities
current influencers: both friendly and enemy. The results of this test can be seen in figure 5.4.
These simple heuristics provided the player with an insight into how to react to moves made in
previous game states, rather than simply analysing the current one. This heuristic provided a
roughly 15 percent increase in win rate for the experimental player and thus becomes our new

base player.

Player Test One | Test Two | Test Three | Win Percentage
Base 73 57 70 33.3
Experimental 127 143 130 66.7

Table 5.3: Base player vs. City Influence Heuristic

Further tests were performed on different combinations of these heuristics and little progress
was found. It is likely that these heuristics provide a base increase in win condition simply
from consideration rather than the amount of weight placed upon them. The alternative is that

the heuristics are not independent and require fine tuning for maximum effect. Tests performed

5.3. IMPROVING HEURISTICS 27

with a number of different combinations provided results around the average of fifty percent
win rate not favouring any particular player. Thus, these combinations were not included into

the base player.

The next successful heuristics tests involved the addition of heuristics aimed at adding weight
to placing tiles which result in city captures. This test showed the importance of prioritising
moves which resulted in early game advantages and the winning of pieces over simply gathering
influence. The first tests with this heuristic can be seen in figure 5.4 and resulted in a roughly
15 percent increase in win rates for the experimental player. Again, this experimental player
became the base. Further testing was done in an attempt to prioritise low value pieces when
surrounding cities that are certain wins as well as avoiding cities that are certain losses. These
tests did not require a new heuristic and instead improved on the current heuristic associated
with capturing cities. The results for that test can be found in figure 5.5 and the findings show

an increase in roughly 10 percent, becoming the new base player.

Player Test One | Test Two | Test Three | Win Percentage
Base 75 66 74 35.8
Experimental 125 134 126 64.2

Table 5.4: Base player vs. City Capture Heuristic

Player Test One | Test Two | Test Three | Win Percentage
Base 89 84 80 42.2
Experimental 111 116 120 57.8

Table 5.5: Base player vs. Advanced City Capture Heuristic

The final notable test performed to improve the artificial player was with the introduction of
strategy for using the tile exchange tile. All future tests provided minimal gain in intelligence,
with the tile exchange providing a 15 percent increase in win rate. This increase was
unexpected but understandable given the power of the tile. A player who uses the tile exchange
tile effectively would essentially be able to use a major piece twice, remaining effective into the
late game and receiving an advantage over a player who uses the tile exchange irrationally. The
results for tests with a player making maximum use of the tile exchange against a player using
the tile randomly can be seen in figure 5.6. As the intelligence of the agent increased, the
returns from additional heuristics and modified heuristics becomes increasingly small, with only
very minor changes in win rate. Another method of recording the intelligence of each move
would have to be produced to provide more accurate tests. Due to the element of chance within
the game, from the hand that is randomly allocated, these small improvements are offset by a

game lost due to a poor starting hand, etc.

28

CHAPTER 5. IMPLEMENTATION TESTING

Player Test One | Test Two | Test Three | Win Percentage
Base 70 66 63 34.8
Experimental 130 134 127 65.2

Table 5.6: Base player vs. Tile Exchange Heuristic

Chapter 6

Conclusion

This project has touched on a number of aspects in game theory and artificial intelligence that
has allowed for the construction of both a digital representation of Samurai but also the
building and improvement of an artificial player that is competent at playing the game. For us
to judge the effectiveness of the project, we will see which of our initial project objectives have
been met. Additionally, I will analyse my performance throughout the project in a personal
reflection, discussing my own strengths and weaknesses as well as my opinions on the project.
Towards the end we will discuss the possibility of future research outside of the scope of this

project.

6.1 Project Outcome

The purpose of this project was to successfully explore the four objectives that were defined in
section 1.3. In order to determine the accomplishment of this report, we must discuss if these

objectives have been achieved.

The first objective of this project was to create a digital version of the board game Samurai.
This objective I believe has been successfully accomplished by this project, the software
deliverable is capable of playing a full round of Samurai as defined in the project scope (section
2.3.4) and has been tested to ensure that all of the rules are followed. The game can be played
by two independent players, taking it in turns to place tiles on the game board. All of the
moves available to the players are determined by the games rule set and thus a player is only
able to make moves that are within the rules of the game. The software is able to produce a

winner which is accurately calculated from the ending state of the game.

The second objective that this project hoped to fulfil was creating a graphical representation of
the board game Samurai. This involved translating the current state of the game and any
moves by players onto a GUI. This objective has also been achieved, the game can be observed
through a graphical representation: allowing a user of the software to progress through a play
move-by-move observing the difference in state at each move throughout a play. The graphical
representation replicates the style used on the board game with a hexagonal grid, highlighting
tiles which have been placed by a particular player. Each tile and city within the game board
has an appropriate descriptor identifying the tile or pieces that are placed at the location.
Although the interface is simple, it is functional and invaluable for using the software as a

research tool, allowing the user to see which moves are being made by each player.

Developing a simple artificial player for the game was the third goal of this project. In order to
test that the game representation was functional a naive player was built which chose moves at

random. This implementation although simple proved a number of important aspects about

29

30 CHAPTER 6. CONCLUSION

the game, including that a strategy exists that allows for a consistently better payoff than
random play. On top of this, a player was produced which chose moves based on simple
heuristics and showed a degree of intelligence, favouring moves which would likely result in a
positive payoff for the player. This player was tested and later refined but showed the

foundations for an artificial player for the game Samurai.

The final objective set out by this project was exploring advanced artificial players that would
be competent at defeating a player that makes rational moves in order to maximise their payoff.
Although limited in extent of the techniques used to fulfil this objective, the initial players were
improved substantially, to a point where the players with more advanced heuristics are able to
win against the base heuristics player almost every time. This project does fulfil this objective

but there are certainly grounds for more research which we will discuss in section 6.3.

6.2 Personal Reflection

Overall I believe that this has been a positive end to the project, with the objectives all being
satisfied, although I do believe there was plenty of room for improvement and had the project

been better managed, the possibility of a more refined artificial player.

This project gave me the opportunity to explore areas of artificial intelligence which I have not
touched before, reaching beyond the taught material within my degree programme. Multiple
previously unknown techniques were explored which certainly improved my knowledge of the
field. Due to this project, I would certainly feel much more comfortable leading another project
or further research into artificial intelligence. Furthermore, it gave me the opportunity to work
with PyQt, a technology I previously had no experience with. I certainly think that the quality
of the report could have been improved and refined from an academic standpoint, but as the
first technical report I have produced, provided plenty of opportunity for learning which I'm

sure will be invaluable in the future.

One of the major improvement points that I can take away from this project is the importance
of time management. Although I did make a project plan at the start of the allocated time, I
found that it was often put aside due to external factors such as other modules, exams etc. In
future I would consider developing a more dynamic plan with would allow me to better meet
deadlines for the module as well as providing plenty of time for background research and the
actual development of the software. It is important to carefully analyse the project beforehand
and try to predict the amount of time each section will take to avoid situations where there is
not enough time at the end of the project to both complete the software deliverable and the
report write-up in the detail and quality that I would prefer.

Continuing from that point, a large portion of the project was spent exploring technique which
ultimately did not become an aspect of the final project. I spent a considerable amount of time
exploring how reinforcement learning could be used without contributing any significant

progress to the project. This ultimately left me behind schedule for writing the report and

6.3. FUTURE WORK 31

building the software. This could have been avoided with a better project plan: assessing
beforehand in more detail how to mediate risk in research as well as more thorough background

research.

The size of the project means that there are a number of valuable learning moments
throughout the lifespan of the project that will I will make sure to consider before starting any
projects in the future. I think I could certainly have made better use of the resources available
to me, meeting with my supervisor more often rather than trying to tackle the project alone.
However, I have thoroughly enjoyed the project and will likely continue research in the area

past the deadline and outside the scope of this project when possible.

6.3 Future Work

Using the findings from this project it would be interesting to explore how the artificial player
generated within the scope of this project could be applied to an extended scope. One of the
main areas of future research would be expanding the game representation to a three or four
player game. The representation would be easily adapted for the increased size and the rules
remain the same. However, it is likely that different combinations and weightings of heuristics

would be better suited to Samurai with more players and a bigger board size.

An improvement that I would make to the existing software would be to incorporate a more
user friendly graphical interface. The interface could be more useful with the ability to see the
weightings given to each location by each player - allowing a user to visualise exactly why a
move has been made rather than adjusting heuristics based upon win percentages. It would
also be interesting to modify the interface slightly so that a human player would be able to play
against the artificial player, further testing the capability of the artificial player. Although I
doubt this would improve the functionality of the software as a research tool, it would be

interesting to see the ability of the Al against another human player.

Finding heuristics that could produce good strategies for all of the tiles proved to be more
difficult than expected. Some tiles such as the special tiles (tile exchange, piece exchange) are
difficult to use effectively in play and usually are special cases. These pieces can have a large
impact on the game but building a strategy that can use them to their potential is difficult.
Further research could look into implementing more advanced heuristics for these pieces to
increase the tool set of the artificial player, allowing for more complex strategies. On top of
this, the software created in this project treats each tile placed within a move as a seperate
entity, assigning values to each tile placed individually. In reality, a player would move multiple
tiles in unison for an overall effect. Applying heuristics to groups of tiles rather than single tiles

could certainly improve the ability of the artificial player.

Finally, exploration into hyper-heuristics could provide meaningful insights into the
combinations of heuristics used to generate values for each move. The current heuristics do not

adapt to different situations and are manually adjusted based upon observations. Allowing the

32 CHAPTER 6. CONCLUSION

artificial player to modify these heuristics based upon the current state of the game and over a
large number of plays would refine the heuristics and provide better strategies for the player to

choose from.

References

[1] S. Brocas, Carrillo. The path to equilibrium in sequential and simultaneous games. 2016.

[2] G. C. et al. Cooperative game theory: Basic concepts and computational challenges. IEEE
Intelligent Systems 27, page 86, 2012.

[3] H. Gintis. Behavioural game theory and contemporary economic theory. Analyse and
Kritik, pages 25-30, 2005.

[4] m van otterlo. Reinforcement learning and markov decision process. pages 342, 2012.
[5] J. Mycielski. Games with perfect information. pages 43-45.

[6] R. Myerson. Game theory: Analysis of conflict. Harvard University Press, 1991.

[7] G. Owen. Zero-sum theory. Game Theory: Third Edition, page 11, 1995.

[8] E. Prisner. Terminology of game theory. Game Theory Through Ezamples, pages 1-10,
2014.

[9] H. R. Robert Luce. N-player game theory. Games and Decisions: introduction and critical

survey, 1957.
[10] S. Russell. Artificial intelligence: A modern approach. pages 163171, 2003.

[11] M. Shubik. Game theory models and methods in political economics. Handbook of
Mathematical Economics, pages 285-330, 1981.

[12] A. M. Turing. Digital computers applied to games. 'Faster Than Thought’ by B. V.
Bowden, pages 286-310, 1953.

33

34

REFERENCES

Appendices

35

Appendix A

External Material

This project was hosted on GitLab for the purpose of version control and issue tracking. The

GitLab repository can be found at:
https://gitlab.com/sc15js/final-year-project
The repository includes all of the source code as well as instructions on how to build, run and

use the software.

This project made use of Python 3 for the software implementation. The Python 3 "PyQt5’
library was used to construct the graphical user interface. No other external resources were

used.

37

38

APPENDIX A. EXTERNAL MATERIAL

Appendix B

Ethical Issues Addressed

When conducting research in any field it is important to consider the impact of this research
beforehand to ensure that the research is conducted in a responsible manner. Many projects,
particularly in computing, due to the handling of sensitive data and consumer trust placed on
software, have some ethical issues associated with them. Here I will discuss some of the
potential legal, ethical, social and professional issues that could be associated with this project

and how they could be prevented.

This project, within the scope defined by this report, does not present any obvious legal issues.
Legal issues are often present in software engineering when sensitive data is being stored or
when the software itself reaches at the boundaries of what is legal (for example software that
encourages piracy, or illicit messaging services). The scope of this project does not concern any
of these issues, however if human testers were used in the future, it may be a legal requirement
to receive written consent for those testers personal data to be recorded as part of the research.

This project does not have that requirement and thus is not effected by legal issues.

Furthermore, the scope of this project does not clearly present any ethical issues that could be
perceived negatively by a user or community. Some ethical issues that software engineers may
have to consider is the use case of their software, if to software could be easily adapted for
nefarious purposes. The software developed in this project does handle artificial intelligence
which some may consider a potential future ethical problem; especially how we approach
designing artificial intelligence to protect the future of the human race. Fortunately, the scope
of this project is limited in that extent and is extremely unlikely to present any issues of that
kind.

Another consideration software engineers must make is social issues associated with their
software. This project does not include any human elements and so does not need to address
any social issues from the research conducted. Future features could be considered for the user
interface of the project such as text to speech integration and more considerations for impaired
users. However these things would require significant development time and/or deduct from the
research potential of the software. Although improvements could be made, there are no obvious

issues that this project faces in regard to today’s social climate.

From a professional standpoint, the project is stored on a public version control system,
allowing others to view, learn and possibly contribute to the project in the future, in the hope
of contributing meaningful research to the field. However due to the individual nature of this
project, it is unlikely to face any professional issues that could arise from a team project or a

project with significant outside influence.

39

