

 Exploring Artificial Intelligence within Stochastic Adversarial Games involving

Imperfect Information

Jordan O’Brien

Submitted in accordance with the requirements for the degree of

BSc Computer Science

2016/2017

School of Computing
FACULTY OF ENGINEERING

- ii -

The candidate confirms that the following have been submitted:

Items Format Recipient(s) and Date

Project Report PDF VLE (10/05/17)

Project Report Physical Copy (x2) SSO (10/05/17)

Code GitLab Repository Supervisor & Assessor (10/05/17)

Participant Consent Forms Signed forms in envelope SSO (10/05/17)

Type of Project: Exploratory Software

The candidate confirms that the work submitted is their own and the appropriate credit has

been given where reference has been made to the work of others.

I understand that failure to attribute material which is obtained from another source may be

considered as plagiarism.

 (Signature of student) ______________________________

© 2016/2017 The University of Leeds and Jordan O’Brien

- iii -

Summary

This project explores the creation of an artificial player that has the capability of defeating

human players in a relatively unknown strategy-based card game called ‘Jaipur’. The game

itself exhibits properties not usually found within more well understood games such as

Chess, therefore the methods produced have needed to consider this when making

intelligent well-informed choices.

- iv -

Acknowledgements

I would like to thank my supervisor Dr Brandon Bennett who gave me invaluable guidance

and support throughout the entirety of my project. In addition, I would like to thank Dr

Mehmet Dogar for the very helpful feedback that he provided in my progress meeting.

- v -

Table of Contents

Summary ... iii

Acknowledgements .. iv

Table of Contents .. v

Chapter 1 - Introduction .. 1

1.1 The Problem .. 1

1.2 Project Aim .. 1

1.3 Objectives ... 2

1.4 Methodology .. 2

1.4.1 Initial Timeline ... 2

1.4.2 Revised Timeline .. 4

Chapter 2 – Background Research .. 5

2.1 Game Theory .. 5

2.1.1 Terminology .. 5

2.1.2 Game Strategies ... 6

2.1.3 Game Types ... 6

2.1.4 Game Representations ... 9

2.1.5 “Solved” Games .. 10

2.1.6 “Skill” Games .. 10

2.2 Artificial Intelligence Techniques ... 10

2.2.1 Heuristic State Evaluation ... 10

2.2.2 Minimax .. 11

2.2.3 Machine Learning ... 14

2.2.4 General Game Playing .. 15

2.3 The Game of ‘Jaipur’ ... 16

2.3.1 Setup .. 16

2.3.2 Rules ... 17

2.3.3 Classification ... 18

2.3.4 Approach .. 19

Chapter 3 – Game Implementation .. 21

3.1 Language .. 21

3.2 Class Structure .. 22

3.3 Key Class Attributes .. 23

- vi -

3.4 Interface .. 25

Chapter 4 – Constructing an Artificial Player ... 26

4.1 Game State Representation .. 26

4.2 Basic Strategies .. 27

4.2.1 Random Decision Making ... 27

4.2.2 Greedy Decision Making ... 28

4.2.3 Summary .. 28

4.3 Advanced Strategies ... 29

4.3.1 Estimating Future Market Cards 29

4.3.2 Opposition Hand Prediction .. 31

4.3.3 Heuristic State Evaluation Function 33

4.3.4 Expectiminimax ... 36

4.3.5 Summary .. 37

Chapter 5 – Testing the Solution ... 39

5.1 Tuning Heuristic Parameters ... 39

5.2 Strategy Comparison .. 42

5.3 Human Player Tests .. 45

Chapter 6 – Conclusion .. 47

6.1 Aim and Objectives ... 47

6.2 Personal Reflection ... 48

6.3 Future Work .. 49

List of References ... 51

Appendix A External Materials ... 54

A.1 Code Repository ... 54

Appendix B Ethical Issues Addressed .. 55

Appendix C Pseudocode .. 56

C.1 Algorithm 1 ... 56

C.2 Algorithm 2 ... 57

C.3 Algorithm 3 ... 58

C.4 Algorithm 4 ... 59

C.5 Algorithm 5 ... 61

Appendix D Heuristic Parameter Tests ... 62

D.1 Test 1 Results ... 62

D.2 Test 2 Results ... 66

- 1 -

Chapter 1 - Introduction

1.1 The Problem

Strategic adversarial games have been an ongoing source of study in relation to Artificial

Intelligence since the birth of Computer Science [1][2][3][4]. Popular board games such as

Checkers, Connect-Four and Qubic have been the focus of a lot successful research. As a

result of this, techniques such as threat-sequence searches and transposition tables [5] have

been used to simulate a player that can select the most beneficial move whenever one can

be taken, in relation to the overall outcome of a game. However, methods such as these are

only practical when the game-theoretic values can also be computed. This only applies to

games that do not involve chance, negotiation and/or partial/zero visibility of the other

player’s cards/pieces (imperfect information) when the outcome is determined [5]. Therefore

games that do involve these elements have received less attention.

Games such as Poker and Bridge have had less successful programs that can imitate an

experienced player, due to the fact they fall under a totally different classification of game.

This means that the same techniques cannot be applied to games similar to these as players

will not have complete knowledge about the current state of the game at any one given time

and moves become non-deterministic [6]. Therefore more research needs to be conducted

in implementing and testing algorithms for artificial players within strategy games that involve

both imperfect information and chance.

1.2 Project Aim

This project aims to successfully implement an artificial player capable of beating human

players in a game of ‘Jaipur’. The purpose of this is to tackle the main problem (see Section

1.1) using a game which has characteristics that deviate from other (more traditionally

studied) ones such as Chess. Thus, the game ‘Jaipur’ has appropriately been chosen for this

task.

- 2 -

1.3 Objectives

Initially at the beginning of the project, five main objectives were established:

1) Produce a playable implementation of the card game ‘Jaipur’.

2) Perform a background study of the techniques currently used within game playing

software.

3) Develop an AI-style algorithm to play the game.

4) Test and evaluate the algorithm against human players.

5) Compare the algorithm and test results against existing studies involving other

adversarial games with AI implementations.

1.4 Methodology

1.4.1 Initial Timeline

To shape the overall timeline of my project I initially decided to base the delivery of the main

aim around my objectives. I split my project into four key stages. Stages one, two and three

were to be completed sequentially whereas the mandatory stage was to be completed

throughout the entirety of the project. The mandatory stage predominantly consisted of

writing the main report. From week 3, it was decided that this was to be continuous and

would coincide with the other three stages to try and avoid backlog in the days leading to the

deadline.

Each stage focused on a different aspect of the project; however each one needed to be

completed in order to advance to the next one. To avoid falling behind with work, I decided

to take an agile-type of approach when implementing code and completing each stage. Both

stages that involved developing code had two different versions: basic and main. The basic

solution would be essential in order to progress further, and the main solution was to be the

ideal version used within in the final report. Due to this, if I fell behind implementing one of

the basic solutions, there would still be time available in the period reserved for creating the

main solution. Weekly meetings with my supervisor were held at the beginning of each week

to discuss the progress I had been making and to capture any potential problems. At the end

of each stage, a review was held to establish and track the main progress of the project.

Every stage contained specific tasks and were subjected to individual deadlines, as

summarised within the following Gantt chart.

- 3 -

- 4 -

Below I have summarised every basic and main solution listed above:

 Create a playable implementation of ‘Jaipur’

 Basic: Produce a platform for ‘Jaipur’ which can be used by two human

players through a text-based interface.

 Main: Implement an interactive graphical user interface to replace the existing

one.

 Develop an AI-style algorithm for the game

 Basic: Produce one algorithm that is capable of playing ‘Jaipur’ at a

reasonable level of difficulty.

 Main: Extend the AI solution by including additional algorithms that try and

tackle the problem from a different approach.

1.4.2 Revised Timeline

As a general guide, the Gantt chart was able to model the full project scope quite well. By

splitting the main work into three separate stages, it allowed me to keep relatively on track

and plan each task accordingly. Creating basic and main solutions also proved to be very

practical as debugging unperceivable problems became a common practice whilst coding.

This would often slow down production and therefore a contingency plan would become a

very desirable method to employ (later discussed in Section 3.4).

However, alterations had to be made in order to fully complete the background reading.

Initially, I allowed myself a total of 9 days to perform the necessary research needed to

implement the artificial player for the game. This was shown to be a naively optimistic

amount of time and later the task had to be continued in parallel when creating the playable

‘Jaipur’ platform.

Also, whilst completing each main task, trying to write the report in unison transpired to be a

lot more challenging than previously anticipated. As a result, report writing became a low

priority and a lot of sections were left unwritten within the first two stages. As a

consequence, the final 4 weeks consisted only of finishing the main body of the report and

no time was left to perform a comparison study with other similar AI solutions. This being

said, I feel the Gantt chart worked reasonably well by laying out a simple plan to be used as

a rough guide over the full 12 weeks.

- 5 -

Chapter 2 – Background Research

In order to understand how to approach the main aim of the project, I will first need to

classify the problem and then decide what methods can be used to solve it. To do this, I

have conducted an in depth literature review on both general Game Theory and AI

techniques currently used within game playing software. After this, I have provided an

insightful overview of the game ‘Jaipur’ and discussed what approaches will be used to

create the artificial player.

2.1 Game Theory

Game Theory is the study of strategic decision making in situations where the outcomes

(and rewards) of the contributors involved rely heavily on the choices made by other

contributors and themselves. Though originally designed to tackle traditional board games

such as Chess, it has since been abstracted and now has made many advancements in

numerous academic fields such as politics [7][8], biology [9] and economics [10][11].

2.1.1 Terminology

In order to study the different types of games, we need to first define what a game is and

what the components of a game are. To do this I will be using the definitions from a modern

text [12] which takes its ideas directly from important contributors in game theory such as

John Von Neumann, Oskar Morgenstern and John Nash.

 A Game is described by its own set of rules.

 A Play is an instance of a game.

 A State is a unique configuration of all the existing components within a game.

 A Move is a decision in an individual state.

 A Strategy is a plan that tells the player what move to choose in every possible state.

 An Outcome is the consequence of a move.

 A Payoff is the reward produced by the outcome.

 A Rational Player is one that has preferences, belief about the world (including other

players) and will try to optimise their individual payoffs.

- 6 -

2.1.2 Game Strategies

In game theory, two main types of strategy exist: pure and mixed. In a pure strategy, the

player is required to choose one move at probability 1 and the remaining moves at

probability 0. In contrast, a mixed strategy will incorporate random move selection where at

least two choices have a positive probability and all probabilities summate to 1 (e.g. p1 = 0.7

and p2 = 0.3) [13]. Thus, a mixed strategy is the assignment of probability to moves

belonging to separate pure strategies.

Mixed strategies can be used effectively in games where a predictable pure strategy can be

of great advantage to the opponent. For example, if playing a simple game such as Rock-

Paper-Scissors the pure strategy chosen always selects the move Rock, then the opponent

would quickly learn to select the move Paper to earn the maximum payoff. However if they

were to select either Rock, Paper or Scissors at equal probabilities (p = 0.33), the player

would become desirably more unpredictable.

Games involving chance can also benefit in using mixed strategies as the probabilities

distributed among move choices can reflect on real elements of the game (e.g. the likelihood

of the next card in a standard shuffled deck belonging to the suit of clubs). It is also worth

mentioning the strategy type chosen may depend on the number of moves available to pick

from in a game throughout, this being a fixed or non-fixed value. Games with a non-fixed

number of moves can often have a different output in different states of the game even whilst

using the same pure strategy throughout.

2.1.3 Game Types

Zero Sum and Non-Zero Sum Games

Zero sum games have the property that the sum of the payoffs to all players is equal to zero.

Thus a player can only have a positive payoff if at least one other player within the game has

a negative one [12]. Consider Chess and Checkers as examples where the overall payoffs

are determined by the victory status of each player. If a player wins they receive the payoff

of 1, if they lose the payoff of -1 and 0 if the game is a draw. As only one player can win

(consequently meaning the other loses), the sum of both player’s overall payoffs will always

be zero. Therefore it can be said the payoff of player two is the negative payoff of player one

[14].

Alternatively, in a game where one player’s gain does not have to come at the expense of

another player, it is classified as non-zero sum [15]. Because of this condition, games that

- 7 -

can contain more than one winner at the end are typically categorised under this domain

(given the overall payoff is determined by the victory status of each player).

One, Two and N-Player Games

The number of players in a game can greatly influence a strategy one can take to try and

reach the overall objective (the objective usually being to win). Games that only contain one

player tend to form simpler strategies when deciding what move to take next due to the lack

of outside parties (other players) hindering one’s own success. Because of this, the strategy

chosen often tries to maximise the chances of the player gaining victory however if game

offers uncertain elements (e.g. taking an unknown card from a shuffled deck) this should

also be considered.

Two-player games are often adversarial and only focus on competing against one another to

win. This being said, players must also factor in their opponent when selecting a move as it

may have more payoff for them in the future than the immediate value it gives.

Games that consist of three or more players are commonly referred to having n-players.

Where in two-player zero sum games the payoff is always the opposite of the other player,

this is not always the case with more players involved. The payoffs distributed do not have to

be equal however still need to respect the zero sum property [16]. For instance, if after a

move the payoffs for players one, two and three are 7, -3 and -4 respectively, it is still valid.

Perfect and Imperfect Information Games

A game has perfect information if every player has a full awareness of all current and

previous states for all other players. This means that every player will be aware of the

previous choices of all other players in any point of a single game [17]. It should be noted

that perfect information games are not the same as complete information games. These

games alternatively describe situations where players have common knowledge of the game

being played. This could include knowing what moves are possible and what the payoffs are

of specific moves taken given a certain state [18].

Imperfect information occurs frequently in games where players are unable to see their

opponent’s cards, pieces, etc. initially and/or throughout a play. Good examples include

Poker, Scrabble and Stratego.

- 8 -

Deterministic and Stochastic Games

A game is deterministic only if when a specific move is performed in a specific state of an

overall game, the output is always the same no matter how many times it is executed. Every

move performed in a deterministic game has no variation and each output is uniquely pre-

determined given the current state and the move selected. It should also be mentioned that

games that involve imperfect information can still be deterministic as even if a player cannot

see the outcome of their move, it may still be determined (e.g. selecting a coordinate to “hit”

in the board game Battleship).

If a game contains elements of chance such as dice rolls or card shuffling it is classified as

stochastic. This occurs if the outcome of any action in any possible state is uncertain. One

way to calculate the payoffs in stochastic games is to take weighted averages of the

probabilities of the next possible states [19], thus generating a sensible estimate.

Cooperative and Non- Cooperative Games

A game is said to be cooperative when the results of a negotiation between two players can

be put into a contract (a formal agreement) and enforced [12]. Players will be able to form

alliances with current opponents or may be able to make an agreement that does not have

to be self-enforcing [20].This means if an agreement that affects two players (e.g. a trade) is

made it can have one or more other players contributing towards it.

As cooperative games centre on forming agreements with at least one other player, it is

implied that each game of this type can have no less than three players involved. In a two-

player game it would typically make no sense to try and assist the opponent winning if the

objective was to beat them.

Forming contracts with opponents often can be more advantageous and mutually beneficial

than working alone. The board game Risk often encompasses this idea, as players may find

working together can quickly strengthen their current position whilst gradually eliminating

players outside the formal coalition made. Also, it is suggested a necessary condition for a

formation of any agreement is that it is stable, meaning members of the agreement must not

have any incentive to walk away from it whilst it is effective [21].

Simultaneous and Sequential Games

Simultaneous games occur when, in a play, all players have only one move and all moves

are made instantaneously. Alternatively, a sequential game does not allow players to take a

move at the same time and players may be allowed to move several times before their turn

- 9 -

has ended [12]. Because of this, sequential games allow players to have knowledge of their

opponents past moves before they select their own which can have a much greater influence

on their choice. By definition, if a game is simultaneous it will also have imperfect information

as the player will always be unaware of their opponent’s current choice(s). The games Rock-

Paper-Scissors and Uno are simultaneous as no turns are taken when selecting a move.

2.1.4 Game Representations

How a game is represented relies exclusively on whether it is classified as simultaneous or

not. If it is then the game can be denoted in Normal Form. This consists of a finite set of

players, a set of all possible moves assigned to each player and a payoff function which

allocates a payoff to each player depending on what move was selected from each one [22].

This information can then be represented in a matrix of n-dimensions, where n = number of

players (see Figure 2.1).

For sequential games, Extensive Form is used instead as it incorporates moves that are

executed in succession. A game tree is used to represent the entire game where each node

represents a specific state and each arc (branch) is a possible choice made by one of the

players. The initial node (root) is usually the start of the game but can be the current state if

the game has already begun. Nodes only connected to one arc are the end nodes (leaves).

These contain the payoffs which the players receive if the combinations of move choices to

get there from the initial node are selected (see Figure 2.2).

Figure 2.1 – The game Rock-Paper-

Scissors in Normal Form [15]

Figure 2.2 – An abstract game in

Extensive Form [22]

- 10 -

2.1.5 “Solved” Games

Some games have the possibility of being “solved” which means the overall output (win, lose

or draw) can be correctly predicted given the current state of the game and which move the

current player selects (given the other player is also playing perfectly). Checkers is the most

complex game solved to date; with 1020 different possible board positions and 1014

calculations to complete the proof, it took 18 years to complete [23]. However this is only

possible for deterministic games with perfect information.

It can also be mentioned in more recent years this has become more achievable to

accomplish due to the growth of parallel computation. Whereas in the past researchers have

been able to solely rely on steady processor clock speed increases to tackle games with

larger state spaces, this is no longer wise as clock speed increments are slowly coming to a

halt [24].

2.1.6 “Skill” Games

Games such as Poker, Bridge, Blackjack, Scrabble and Risk can never be fully solved due

their elements of chance and imperfect information. This has led to debates whether a game

such as Poker can be considered a skill game or not for which there is no definitive answer.

It can however be argued that the classification of Poker as a skill game does not depend on

the game but on other players behaviour (rational /irrational) [25]. Therefore to optimise

one’s own moves in a game such as this, predicting the other player’s strategy could

potentially be the key to success.

2.2 Artificial Intelligence Techniques

2.2.1 Heuristic State Evaluation

Traditionally, heuristics are used in algorithms to find approximations to solutions when

speed is a greater priority than total accuracy. This idea can be used to estimate the value of

a specific state within a game by using heuristic evaluation functions. These provide

estimates of the overall payoff when selecting a specific move in a play. If designed

correctly, each function should accurately predict the true utility of a state without doing a

complete search of all possible outcomes [26].

- 11 -

When constructing a function for a game, it should be based on the general structure and

components involved. A good example is Chess as each piece can be designated a value

(e.g. every pawn is worth 1, every knight is worth 6, every queen is worth 14 and so on), and

depending on the positions, mobility potential and number remaining for each piece, a

heuristic evaluation function can be used to assess all possible next moves. These

evaluations are not completely precise; the player is more likely to gain better evaluations

when they provide the function with more information about the current state of the game

[27]. It can also be argued that an admissible heuristic (one that provides a lower bound

estimate than the actual end state) will be more likely found if this approach is taken.

In many early game-playing programs, functions such as these were widely used as they

were mainly knowledge-based. This meant that they did not rely on search but on the

information available about the current state of the game, as computational speed was

usually an issue [28]. One of the most common function types used within games is the

weighted linear function:

Each feature (f0, f1, f2, … fn) represents a component of the current state of the game e.g.

piece/card type, number of moves remaining etc. and each weight (w0, w1, w2, … wn) is an

adjustable parameter that represents the current value of each component [26].

2.2.2 Minimax

Games that incorporate classic characteristics (perfect information, deterministic moves,

sequential gameplay, zero-sum and two players) can often use an algorithm called minimax

which is designed to find the best move for the current player to take.

Each game is modelled in extensive form and the whole game tree is generated, displaying

all possible alternating moves between players. A utility function is applied to all end nodes

to decide if the current player wins the game in each instance. Each value is then recursively

passed up the layers of the tree, finding the maximum value (max nodes) for when it is the

current player’s turn and the minimum value (min nodes) when it is the opposing player’s.

When the values eventually reach the first level of the tree, the move with the maximum

payoff is selected. This is called the minimax decision as it maximises the payoff under the

presumption the opponent is trying to minimise it [26].

- 12 -

Maximin

Variants of the minimax algorithm have also been designed to tackle games with alternative

goals. One example is the maximin algorithm which aims to select the move that minimises

the total payoff for the current player. As well as games where the overall objective is to lose

or gain minimum points (such as the popular card game Hearts), it may be advantageous to

use the algorithm when there is knowledge that the other player will play poorly or make ill-

informed choices [29].

Alpha-Beta Pruning

Searching a full game tree using a depth-first process can be exponentially expensive such

that the time complexity becomes O(bm) where b is the worst-case branch number and m is

the maximum depth. Because of this, pruning was developed to disregard sections of the

game tree that make no impact to the final choice. This method is called alpha-beta pruning

where, if done perfectly, can reduce the overall complexity to O(bm/2) [26].

This is done by storing the current maximum value for each node that represents the current

player’s turn (alpha values).These values are then compared to each branch value from the

next level down, thus comparing all possible next moves. If the branch is lower than the

Figure 2.3 – A typical pseudocode representation of the minimax algorithm [26]

- 13 -

current alpha value, it is ignored (pruned), else the alpha value is updated and the branch is

explored. The same is done for each node representing the opposition’s moves using beta

values and only exploring lower branches if the value given for them is higher.

Expectiminimax

Minimax cannot be efficiently used in games that are defined as stochastic as their non-

deterministic elements do not guarantee the overall payoffs discovered by fully searching the

game tree. Because of this, a modified version of the algorithm called expectiminimax was

invented to factor in the probabilities of certain outcomes happening in the future. It does this

by incorporating chance nodes between each min and max node layer of the tree, and each

node value is adjusted accordingly to correspond with the chances of each outcome at each

layer of the tree. However, the rest of the algorithm still operates in the same manner as in

the original minimax [30].

As the additional chance nodes create a larger game tree in terms of complexity, further

measures can be made. As well as using alpha-beta pruning to fully ignore certain branches

of the game tree, gamma pruning can also be implemented within the algorithm to ignore

chance nodes that contain probabilities under a certain threshold (such as p = 0.05) [31].

Existing studies have also shown that by using parallelism to enhance the performance of

expectiminimax, the next move is chosen faster 90% of the time [32].

Cutoff Testing

In addition to pruning, minimax algorithms can abide by a depth limit when searching for the

end nodes in each level of a game tree. This is called a cutoff test. Each node of the game

tree is explored until the depth limit is reached. Once this happens, the utility function is

replaced by a heuristic evaluation function and an estimate of the ultimate payoff (final score,

game victory/defeat etc.) is calculated. These values are then fed up the tree and the

algorithm continues as per usual. It should be noted however that this approach can have

catastrophic consequences due to the fact the evaluation function is estimating the overall

outcome [26].

The method is much more suited for stochastic games that are using techniques such as

expectiminimax. This is because the look ahead of potential future states becomes more and

more obscure depending on the depth of the game tree mainly due to the factors of

probability involved. Therefore cutting the search earlier can potentially result in a better

informed decision (given a sufficient evaluation function is used) rather than exploring every

- 14 -

possibility. This being said, deterministic games have been proven to use this method

successfully such as the Chess playing program ‘Deep Blue’ that used a depth limit of 12

before conducting a heuristic evaluation [33].

2.2.3 Machine Learning

In contrast to classic logic-based artificial intelligence, an alternative tactic could be

implementing an agent that adapts from experience rather than being explicitly programmed

how to react under specific circumstances. This is called machine learning.

Machine learning can be categorised into three types depending on how an algorithm is

designed to learn. The first is supervised learning where the algorithm is provided with a

training set which contains correct outputs for all the inputs given. Using this, it will be

tweaked to react correctly for any possible input. Examples that used supervised learning

include artificial neural networks and support vector machines. The next is unsupervised

learning which is not supplied with a training set. Instead, it will attempt to group the common

elements of the inputs given like in the clustering algorithm k-means [34].

Neither of these learning types is usually implemented in game-playing AI as supervised

learning requires the algorithm to know all outputs for every specific move and unsupervised

learning will not use the feedback given from past move outputs. This being said, training set

data can however be explicitly provided by a human expert (such as ‘Neurogammon‘ which

used neural networks for evaluating backgammon positions) but the algorithm produced will

never be able to play the game at a greater level than the expert [28].

The final type of machine learning addresses these two issues. This type is called

reinforcement learning. Using this method, the algorithm is informed when outputs are wrong

however isn’t given any information regarding how to correct them. Because of this, the

algorithm must try different possibilities until it can find how to get the correct outputs for

specific inputs given [34]. Therefore, reinforcement learning is mostly used in game-playing

AI as correct moves do not need to be given prior for the agent to gain feedback on whether

the moves it is choosing are helping it win. Below are some commonly used reinforcement

techniques used in games.

Q-Learning and SARSA

Using any given Markov Decision Process (MDP), policy learning algorithms such as Q-

Learning and SARSA (State-Action-Reward-State-Action) can be used to learn optimal

- 15 -

policies. Policies are used to decide what the next best action is to take in a specific state,

thus in games it is used to pick the next best move. However, both algorithms differ with the

strategies they both produce. Q-Learning always attempts to follow the shortest path in order

to gain maximum reward, thus is more prone to take risks, as the shorter path may lead to a

negative outcome. SARSA will avoid taking risks to learn the optimal policy, which means it

will always try and act cautiously but may take longer to learn [34]

TD-Learning

Combining both Dynamic Programming and Monte Carlo methods, Temporal Difference

(TD) Learning can be used to predict the next best action to take in a given scenario. In this

procedure, a full model of the environment is not required and updates are made to the

algorithm at every new state it encounters. Thus, TD-Learning adapts only from new

experiences in partially unknown domains [35]. This is an appropriate method to be used for

stochastic games involving imperfect information, as full environments do not need to be

known and the chance elements can rely heavily on the next state predictions it makes.

2.2.4 General Game Playing

More recently, studies have started to focus on developing systems that have the capability

of playing more than one game using only the descriptions (rules and setup) provided. This

is called General Game Playing (GGP). Using well known AI methods such as Knowledge

Representation, Reasoning and Machine Learning, a GGP program will incorporate these to

interpret game descriptions to play at a reasonable level instead of relying on algorithms

created prior for a particular game [36].

GGP programs must also be able to play a range of games that differ in both complexity and

characteristics e.g. perfect/imperfect information, deterministic/stochastic moves etc. There

have already been successful GGP programs implemented that can play the arcade games

‘Space Invaders’, ‘Lunar Lander’ and ‘Frogger’ using only the descriptions provided for each

game [37].

- 16 -

2.3 The Game of ‘Jaipur’

The game which will be explored in this project is called ‘Jaipur’. This is a strategy-based

card game involving two players. To date, there has been no research dedicated to finding

any winning strategies for the game most likely because its characteristics differ somewhat

from games traditionally studied. It can also be argued that due to its fairly unknown

reputation when compared to other popular card games such as Poker, Rummy and

Blackjack, it has received a lot less attention for the means of academic study.

I feel the overall complexity of the game is at an appropriate level for the time available. This

being said, the game is not simple and requires a lot of strategic thought when making

decisions meaning the results I should obtain will be useful in similar future studies. Also, as

research into the game is unprecedented, my techniques, findings and conclusions will not

be affected by any other studies about the game itself.

2.3.1 Setup

The game consists of four main components: goods cards, camel cards, goods tokens and

bonus tokens. The goods cards come in 6 types, each representing a different commodity.

The commodities are: diamonds, gold, silver, cloth, spices and leather. All cards of the same

commodity type are identical, but the value of a card (when it is ‘sold’) depends both on the

commodity type and on the number of cards of that type that have already been sold (thus,

the value decreases as more cards are sold). Bonus tokens can either represent a three,

four or five multiplier bonus, with the average token value increasing respectively. Camel

cards have no variation, but do have a single corresponding bonus token worth 5 points.

Before any game begins, each goods token must be sorted in descending order (largest on

top and smallest on the bottom) in each commodity type. The bonus tokens are shuffled in

their specific multiplier groups. Three camel cards are then placed face up between both

players which form the market cards of each round (this also can be referred to the ‘market

place’). The remaining cards in the deck are shuffled. Two cards are then also placed face

up in the market place, and an additional five cards are distributed between each player.

Both players must then extract the camel cards from their hand and place them in a stack

face up in front of them, this is called the player’s ‘camel herd’. The remaining cards form

each player’s goods hand which are not to be shown to either opponent.

- 17 -

2.3.2 Rules

The main focus of ‘Jaipur’ involves taking, selling and trading cards to try and become richer

than your rival trader (the opponent) after every round. The first player to win two rounds is

the winner.

The goods cards represents what each player currently has in their disposal, what goods are

currently in the market place and what goods have already been sold (burnt cards). The

camel cards are mainly used for trades in the market place when more than one goods card

is of interest to the player. The goods tokens represent how many points a player has

earned when selling one or more cards of the same type. Bonus tokens can be gained when

selling three, four, or five of the same card in one turn or having more camels at the end of a

round, both resulting in extra points.

A player can choose one of four actions in their turn: ‘take all camel cards’, ‘take one goods

card’, ‘sell cards’ or ‘trade cards’. If a player wishes to take cards from the market place, they

can either take one goods card from the market and replace it with one from the deck, they

can take all of the available camels and replace them all with cards from the deck, or trade

two or more cards (camels or goods cards in the player’s hand) with goods cards in the

market. It should also be mentioned that a player can only have up to 7 goods cards in their

deck at any one given time, any amount of camel cards is allowed.

Figure 2.4 – A typical setup of the game ‘Jaipur’, taken from an online version of

the game [38]

- 18 -

However if a player wants to sell cards they can select one or more goods cards (of the

same type) from their deck and sell them in exchange for the correct number of goods

tokens (and bonus tokens if applicable). If a player tries to sell more cards than there are

available tokens, they will instead only take all of the available tokens of that specific goods

type, this does not however stop the player achieving a bonus token if three or more cards

are sold. If the player wishes to sell expensive goods (diamonds, gold or silver), two or more

must be selected unlike the other cheaper goods (leather, fabric or spices).

A round ends if there are no more cards left within the deck or if there are no more tokens

left for three good types. After each round the player with the most camels achieves the

bonus camel token worth five points, if both players have the same amount of camels,

neither gain the token. Once this is addressed, all the tokens a player has gained are totalled

and the player with the most points wins the round. If a draw still occurs, the player with the

most bonus tokens wins, and then with the most goods cards if there is still a draw. Two won

rounds for a player results in an overall game win.

It should also be noted that in every round each player is permitted to know the exact

quantity of goods cards the opposing player currently has and whether they possess camel

cards or not.

2.3.3 Classification

Below, using the game categories previously defined in Section 2.1.3, the game ‘Jaipur’ has

the following characteristics:

 Zero-Sum: If we are to treat each game victory as the ultimate payoff for each play

(+1 for a win and -1 for a defeat), it is not possible for both players to win or lose.

 Two Player: Playing the game with a single player or more than two is not possible.

 Imperfect Information: Each player cannot see their opponent’s goods cards nor can

they explicitly know how many camel cards they currently have.

 Stochastic: If a market card is taken and not replaced, one is taken from the shuffled

deck and placed in the market place.

 Non-Cooperative: As the game contains two players, cooperation is not possible.

 Sequential: Moves have to be taken in a consecutive manner, and each player must

wait for their turn in order to perform a move.

As ‘Jaipur’ involves imperfect information and is defined as stochastic, it deviates from other

games which have been studied extensively in the past, and therefore is a good choice of

game to study for the overall purpose of this project.

- 19 -

2.3.4 Approach

To create the artificial player for the game, I have decided to use the expectiminimax

algorithm which will incorporate heuristic state evaluation functions for any pre-selected

depth of the game tree. Using this, the AI will be able to decide what the next best move is in

order to receive the optimal payoff in any given state. I have noticed through playing the

game multiple times, “almost” perfect information can be achieved by studying the previous

game states and every move available to the player does not necessarily have to involve

chance.

Although there is always some uncertainty at the beginning of the game, since new cards

can only be obtained by drawing from the market place, it is nearly always possible to obtain

complete knowledge of the cards the opponent holds within a few moves of the game start. It

is because of this, I have decided to implement logic-based methods used more in traditional

games opposed to using an alternative machine learning approach. I have also avoided

using General Game Playing methods as only one game for this project is being studied.

As previously defined in Section 2.3.3, a player can choose between a total of four actions

depending on the type of move they wish to pursue. Each action has a different number of

possible moves depending on its type and the cards available within the player’s current

hand and the current market place. As illustrated in the table below, in any given turn, a

player will only be able to choose between a maximum of 6 stochastic moves out of a

potential 38. Therefore, it can be argued that even though the game is classified as

stochastic, a large amount of moves available in any given turn can be deterministic.

Action Maximum Number of Moves Available Move Type

Take all camel cards 1 Stochastic

Take one goods card 5 Stochastic

Trade cards 26 Deterministic

Sell cards 5 Deterministic

However, it is worth noting that what is directly obtained by the player in terms of cards or

points is always determined. The stochastic element only arises when cards are taken from

the market and replaced from the main deck (rather than from a player’s hand in the ‘trade

cards’ action). Thus, the randomness only affects the possibilities of the next state.

- 20 -

In addition to this, the imperfect information within ‘Jaipur’ can be completely eradicated if

the player is able to correctly evaluate the opposition’s current hand. This can be achieved

by taking into account the opposing player’s past moves and by using the information

currently known about the opposition. This is only possible however due to the fact a player

cannot directly pick up a card from the shuffled deck unless it is within the initial setup of the

game where 5 are distributed randomly to both.

Because of these two factors, the expectiminimax algorithm only has to incorporate chance

nodes for stochastic moves but can operate like the original minimax algorithm otherwise.

Thus, strategies will only use a mixed approach if a move it is handling involves uncertainty.

Alternatively, if the move chosen is deterministic, a strategy should only use a pure

approach. The depth limit for each game tree will ultimately be dictated by the knowledge the

current player has regarding the opposing player’s hand. This information is vital to predict

how the other player is going to react and perform in future moves; therefore fluctuation in

game tree depth must be considered.

It has also been decided that each round will be categorised as a single play of each game

(rather than the `best of three’ specified in the official rules) due to every round being unique

and independent from the last. Therefore the ultimate goal for the artificial player will be to

win each round it is currently playing, thus making the overall payoff for each play the round

score and not the overall game victory/defeat. If this approach is taken for every round,

winning the overall game can be achieved as a consequence.

Two types of strategy will be created for the artificial player to use within any single play. The

first strategy type will use a basic approach that will rely on both random and greedy

decision making. The second will use the more suitable expectiminimax approach with

heuristic state evaluation. This will differ in depth limit depending on the specific strategy

chosen. The purpose of this will be to test the strategy types against one another in order to

evaluate the strength of the expectiminimax algorithm implemented. Before this however, the

most effective parameters within the heuristic state evaluation will be found through playing

multiple instances of the game using two AI players, each using a different strategy type.

After this, the best strategy found will be used to compete against three separate human

players in a multiple number of plays. The test results should be able to primarily decide

whether the main aim of the project has been met or not.

- 21 -

Chapter 3 – Game Implementation

To be able to implement an artificial player, I need to first produce a platform in which the

game can be played between two human players. This will consist of integrating all the major

components and aspects of the main setup and rules discussed in Sections 2.3.1 and 2.3.2.

To do this, I will first justify the language which I have chosen to write the software in. This

will then be followed by a summary of all the classes I have designed which contain the core

elements found within the game and a brief overview of some of the key attributes I have

included. To finish, I will discuss the changes I have made in regards to the final interface

chosen for the main solution.

3.1 Language

Through playing the game multiple times, I have found that typically each player will have

20-25 turns per round. This means the total number of turns in each round can

approximately be up to 50. Given that in each turn a single player can have a total of 37

possible choices, the worst-case search space within a single round can potentially be 5037

(≈ 7.276 · 1062). Because of this, I needed to select a programming language that was

capable of handling large amounts of data within an efficient amount of time.

For this problem, I chose to select Java as the main language to implement my solution for

three of its main properties: efficient speed, automatic memory management and rich object-

oriented design. Unlike lower-level languages such as C and C++, Java offers garbage

collection which automatically removes old unused memory when processing large amounts

of data (such as calculating all possible game states). This being said, the same procedure

can be done manually in C and C++ however is prone to cause many unnecessary errors

[39] which was very undesirable given the project timescale.

Even though Java has been proven to be faster than languages with simpler syntaxes such

as Python and Perl, typically Java is slightly slower than C and C++. However, as neither C

nor C++ offer garbage collection, Java was still the stronger choice.

I decided that having an object-oriented solution was to be the most appropriate approach

for representing the game. This is because I knew the core components could each be

separately represented as collections of objects. Each object would be able to have relative

methods associated to them which could abide by the games rules thus making illegal

moves impossible to perform. Also making additions and amendments to the foundations of

- 22 -

the main game and AI code could be easily accomplished. As Java insists on using an

object- oriented approach, it seemed wise to select this language.

3.2 Class Structure

To separate the main game into classes, I first established the main psychical components.

This consisted of all the cards and tokens used throughout each round, thus three classes

were established: MainDeck, GoodsTokens and BonusTokens. The MainDeck class

represents all 55 cards that can be placed in the market and handled/sold by both players.

Both token classes (GoodsTokens and BonusTokens) alternatively represent the goods and

bonus tokens that can be obtained after any sale is made by either player. All of these

classes contain methods that adjust in accordance to player moves and determine when a

round has ended (e.g. when there are no more cards left within the current deck to

distribute).

After this, a Player class was created to handle every current hand and point score of each

participant within a round. This class mainly adds/removes cards from the current player’s

hand given their move choice and adds points to their score if a sale has occurred. This was

then extended into the two subclasses HumanPlayer and ComputerPlayer which determines

whether the player is human or synthetic. The ComputerPlayer class will be expanded later

once the AI implementation has begun.

These classes were then all collectively used to create an instance of each round in a new

class named JaipurRound. This was primarily designed to introduce the initial setup of a

specific round, explicit card domains (the market place and previously sold cards) and the

rules used within the general gameplay including legal move choices each player can make.

Three instances of the JaipurRound class were established in a new class representing the

full game named JaipurGame. In this class, an instance of each round can be created and

played using two players. Round wins are determined and totalled, player turns are

established and user interaction (e.g. selecting the next move to take) is controlled through a

text-based interface contained within a separate class named TextInterface. This interface is

predominantly used to convey all of the relevant information a user needs in order to

successfully play the game e.g. the current game table, the current player name and score,

and the visible information known about the opposing player (such as goods cards quantity).

Also, this is where a user will be able to input commands such as move choices and listing

both sold cards and previous moves already executed by either player.

- 23 -

Each game can be played through a class that creates a single instance of JaipurGame.

This class is called JaipurMain. Later, once the artificial player has been created, I will use

this class to test the parameters used within the heuristic state evaluation and to compare

the various strategies I will eventually implement for the AI.

3.3 Key Class Attributes

In order to understand how I will design the artificial player for the game, I first need to

provide a brief overview of some of the key attributes I have included within the classes.

Each attribute I will discuss contains necessary information needed for the AI strategies I will

later implement.

All of the cards and tokens within each round are handled within separate containers using

the ArrayList class. Each individual card type is represented by a unique string consisting of

the first character or first three characters of each card name, depending on whether two

card names share the same first letter. Therefore, each card type can be represented by one

of the following strings: “D”, “G”, “Sil”, “Clo”, “Spi”, “L” and “Cam”. Each token alternatively is

assigned to a single integer value.

To handle every card and token within each round, domains have been produced through

using particular attributes within specific classes. These attributes use ArrayList data

structures, each one consisting of either strings for card types or integers for token values.

Figure 3.1 – A UML diagram displaying the basic composition and

relationships between each class

- 24 -

A single card can be handled between six main domains once it is has been taken from the

MainDeck class. These include ‘current_goods_hand’ and ‘current_camels_hand’ in two

instances of the Player class, and ‘current_market’ and ‘sold_cards’ in one instance of the

JaipurRound class. Cards can only be reallocated to other domains if they are used in a

move performed by a player. This has been illustrated in Figure 3.2 below.

Each token type is represented by eight domains. These include ‘diamond_tokens’,

‘gold_tokens’, ‘silver_tokens’, ‘cloth_tokens’, ‘spice_tokens’ and ‘leather_tokens’ in one

instance of the GoodsTokens class, and ‘five_multiplier_tokens’, ‘four_multiplier_tokens’ and

‘three_multiplier_tokens’ in one instance of the BonusTokens class. Goods tokens are

initialised in descending order, whilst bonus tokens are initialised randomly. If a sale move is

chosen by a player, the suitable amount of goods tokens are removed from the appropriate

container in the GoodsTokens class. If a bonus token is permitted, one is also removed from

the appropriate container in the BonusTokens class. The integer values extracted are then

added to the player’s overall round score.

Every move performed by a player is represented in an ArrayList containing strings. This is

named ‘next_move’. The first element always contains the action type of the move chosen.

Additional elements in each array represent the cards involved. Below are examples of the

‘next_move’ container used for each action type:

 [“take_camels”, “Cam”, “Cam”, “Cam”]

 [“take_one_good”, “G”]

 [“trade_cards”, “L”, “Cam”, “Cam”, “—-“, “Sil”, “Spi”, “D”]

 [“sell_cards”, “Clo”, “Clo”]

Figure 3.2 - A diagram displaying which domain each card is transferred to after

a specific action type is performed.

- 25 -

Every instance of ‘next_move’ is added to an attribute within the JaipurRound class named

‘previous_moves’. This is an ArrayList that contains all past ArrayList instances of the

‘next_move’ container, thus saving all previous moves chosen by both players.

3.4 Interface

As previously mentioned, users can interact with the game using a clear text-based interface

which dispalys all game state information visible to the current player (e.g. the remaining

goods tokens, the cards in the market place and the current player’s hand etc). This was

originally intended only to be part of the basic solution, however after a discussion with my

supervisor it was decided that it would remain. Initially, a graphical user interface was

planned to be written using a Java API such as Swing or AWT, however due to time

constraints, unexpected bugs and its overall importance to the project aim, the idea had to

be dropped. In retrospect, I feel it was the correct judgement to make as the final solution

created should focus on the efficiency and performance of the artificial player and the

interface design has no impact on this factor.

Figure 3.3 – A screenshot of the text-based user interface

- 26 -

Chapter 4 – Constructing an Artificial Player

In this chapter, I will provide a general outline of all of the stages I conducted to create the

final AI solution. Through using the ComputerPlayer class, I separated the task by

assembling multiple methods which have been collectively used to build both basic and

advanced game strategies. I will first provide details of how I have represented and modelled

each game state. After this, the steps taken to implement each strategy will be explained

and the details of how each one operates will be provided. Please note, any pseudocode

referred to in Sections 4.2 and 4.3 can be found in Appendix C.

4.1 Game State Representation

Before any intelligent decision making could be made by the AI, I needed to first provide it

with all the necessary information about the current state of the game. Using specific

attributes from other classes (discussed in Section 3.3), I tried to simplify all visible

information numerically using one-dimensional arrays. This approach would allow the

program to represent each state in a more compact way. This idea would later become

critical as calculating future states of the game can be exponentially large in number.

At any given state, a player is able to identify all the cards within their current hand, the

market place and the sold pile, all the goods tokens currently available and all the previous

moves performed by both players. As all of the token containers (such as ‘diamond_tokens’,

‘gold_tokens’, ‘silver_tokens’ etc.) only hold the integer value for each available token, no

adjustments needed to be made to them. However, as each card domain uses strings to

represent each card, an alternative representation was required.

To overcome this, a method was developed which takes a specified domain, and totals the

quantity of each card type into an array. For clarity, the quantities of each domain are always

presented in the following order: diamond total, gold total, silver total, cloth total, spice total,

leather total and camel total. As both goods cards and camel cards were included in this

array, combining both the domains ‘current_goods_cards’ and ‘current_camels_cards’ from

the Player class was necessary to find the quantities of a current player hand.

- 27 -

4.2 Basic Strategies

Before I focussed on implementing the expectiminimax algorithm, I wanted to first create

basic strategies that only took naïve approaches when choosing what move to perform next.

These were intended to imitate an inexperienced player that only considered their

current/next hand whilst ignoring the opposing player, the cards within the current market

place and any potential drawbacks in the near future. The purpose of this was to evaluate if

such a strategy type could successfully be used to win a game, especially when playing

against another strategy that incorporated expectiminimax.

In order for the artificial player to be able to make any decisions at all, it would first need to

be provided with a set of all possible moves to pick from within a specific state. All moves

found needed to be valid and therefore were required to be legal in accordance to the rules

of ‘Jaipur’. This was achieved by analysing the current market cards and the current player’s

hand. Eventually, this would be used by every strategy created.

4.2.1 Random Decision Making

The simplest way for a human player to make a choice is by thinking irrationally. I realised

the same concept could be applied for the AI when it is choosing what move to perform next.

If a move is chosen at random, the AI is not taking into account any other factors of the

game’s current state. Therefore, if this approach was adopted for every single decision made

within a particular round, no measures will have been taken to ensure that the player gains

any points through selling goods cards.

This does not however mean that using a random approach is entirely useless. Whilst only

selecting random moves does not ensure round victory, it does not necessarily ensure

defeat either. Also, using a random decision process may be convenient to use when there

are no more options left to select when employing another non-random approach. All things

Figure 4.1 - An example of a card domain converted into a one-

dimensional array of card quantities.

- 28 -

considered, I decided that only relying on chance to make decisions seemed a very unwise

tactic to take, especially when the opponent shows traits of rational behaviour.

4.2.2 Greedy Decision Making

A way to improve upon selecting moves only at random is by also considering the move

which guarantees the highest immediate payoff. This is an example of a greedy choice. If

applied to ‘Jaipur’, using this approach would not consider any potential future rewards (e.g.

trading cards for a more valuable hand) but would always select the move that provides the

player with the most points given the goods tokens still available. Thus, if a sale action was

possible, one would always be selected when using a greedy strategy.

However, I realised that if a sale action could not be made within a given state, the AI would

still require a way of deciding what move to choose next. To overcome this issue I developed

two separate protocols, either of which could be applied in such a scenario. The first just

selected a move at random. The second took a more logical approach and aimed to

maximise the value of the hand obtained in the next state using the remaining goods tokens

available (see Pseudocode C.1 for details). It should be noted that this approach does not

value camel cards, and therefore will not purposely aim to gain the bonus camel token

gained by one of the players at the end of each round.

4.2.3 Summary

Through using both the random and greedy decision processes discussed, I have created

three separate basic strategies that can each be used in a single play of ‘Jaipur’. Below I

have summarised how each strategy selects its next move within any state of the game.

Basic Strategy 1

Every move is chosen completely at random.

Basic Strategy 2

If there are one or more moves available where a sale is possible, the one which attains the

highest amount of points is chosen; otherwise, a random move is chosen.

- 29 -

Basic Strategy 3

If there are one or more moves available where a sale is possible, the one which attains the

highest amount of points is chosen; otherwise, the move which provides the player with the

most valuable hand (using Pseudocode C.1) is chosen.

4.3 Advanced Strategies

In the next stage, I concentrated my attention to focus primarily on recreating the

expectiminimax algorithm that would successfully integrate all of the state components

‘Jaipur’ had to offer. To do this, I would need to calculate the stochastic information

presented in the market place and then abolish all imperfect information within each play by

successfully evaluating the opponent’s hand. This was followed by creating a heuristic

evaluation function which would be applied to approximate the overall payoff of each

possible move to select from once a specific depth limit of a game tree was reached. Finally,

these concepts were assembled to produce the final algorithm.

Three advanced strategies were then devised using expectiminimax. The main goal for

these approaches was to consider all other factors of each state, which all the previous basic

strategies had disregarded.

4.3.1 Estimating Future Market Cards

To be able to represent chance nodes within each game tree, I had to find a suitable way of

conveying all of the stochastic information found within future states. As previously

mentioned, the only uncertainty offered within the game are the cards that are taken from the

shuffled deck and added to the market place after specific moves are performed (‘take all

camel cards’ and ‘take one goods card’). To simplify the problem, I needed to find the

probabilities of each specific card type being taken from the main deck using the information

available to the player. Thus, every time a new card was to be added to the market after a

stochastic move, an estimation of the next market card quantities could be calculated using

the probabilities of all remaining cards not currently visible to the player.

Taking this approach would mean that chance nodes would not need to be considered within

the main body of the expectiminimax algorithm as the next market card quantities would

always factor any ambiguities presented by the shuffled deck. Because of this, deterministic

moves would avoid any additional calculations involving probability and therefore the

algorithm would potentially be able to increase its general time efficiency.

- 30 -

To achieve this, I first found the quantities of each card type outside of the main deck known

to the player (such as the player’s current hand, the cards in the current market place and

cards that had been sold in previous states). The maximum possible quantity of each card

type was then subtracted by these values to find all remaining quantities of each card type

still within the main deck. Once these were acquired, they were used to find the probabilities

of the next card taken from the deck being of a certain type. This was done by taking the

remaining value of each card type and dividing it by the total number of cards remaining (see

Pseudocode C.2 for details).

I then chose to adopt this method to estimate what the market card quantities would be after

a stochastic move was chosen. Using determined market place quantities already found

within the next state, each remaining card probability for each card type would be added.

Depending on how many cards were taken within each move would ultimately dictate how

many times the remaining card probabilities were to be added (see Pseudocode C.3 for

details). For example, if a ‘take all camels’ move was selected and there were three camels

available, the remaining card probabilities would be added three times to the determined

card quantities of the next market. Using this method would allow the AI to calculate an

estimation of the next market within any given state.

It should be noted that the probabilistic market quantities calculated using this method are

somewhat different to the actual probabilities of possible subsequent market states. In

general, when one card is taken and replaced from the deck, there will be up to seven

possible next market states depending on what card is drawn. Each will have a certain

probability of occurring but will always have an integer number of each card type. This would

give a large branching factor. For example, if n camel cards were taken from the market

place, the branching factor would be n7. Because of this, the method I have implemented

aims to provide a good approximation for the actual probabilities instead to cut down on

search space.

- 31 -

4.3.2 Opposition Hand Prediction

In order for the expectiminimax algorithm to be able to operate correctly, all information

about the current state of the game is required to be known by the AI. This was an issue as

the rules of ‘Jaipur’ do not allow any player to see their opponent’s cards once a round has

officially begun. Because of this, I needed to develop a method that would be able to

successfully evaluate the quantities of each card type within the opponent’s current hand.

Even though a player cannot explicitly know the contents of their opponent’s current hand,

they are permitted to know the total number of goods card the opponent possesses, but not

how many of each type. From this, I was able to find the opponent’s initial camel total by

subtracting the known amount of goods cards from the amount of cards always given to

each player at the start of each round. The initial quantities for each type of good card would

however remain unknown. Therefore at the start of each round two properties of the

opponent’s hand could be established. These were the initial quantity of camel cards and the

initial number of goods cards unknown. Using this information, an array would then be

Figure 4.2 - An example of the calculations involved when estimating the next

market quantities for one undetermined new card

- 32 -

generated presenting the initial known cards possessed by the opponent (e.g. [0, 0, 0, 0, 0,

0, 3]). To begin with, the array values will always be 0 for each good type, since only the

number of camel cards is known.

After this, I discovered that through analysing all of the moves performed by the opponent in

previous states, the array could be updated to identify the known quantities of each card

type. As each possible move in ‘Jaipur’ consists of either adding or removing cards from a

player’s hand, the quantity of a specific card type would be amended using just this

information alone. Thus, the remaining number of unknown goods cards would decrease

every time there was a specific goods card taken from the opponent’s hand which was not

previously known to be there. When the number of known cards becomes equal to the total

number of cards held, all cards are known and this will then remain the case for the rest of

the game. Usually this will happen within only a few moves.

It is also worth mentioning that depending on the type of move selected, the number of cards

either added or removed from each hand would vary. To illustrate this, I have summarised

how each action type affects the known quantities of the opponent’s hand:

 “take_camels” – increases the camel card quantity by however many camel cards

are taken from the market place.

 “take_one_good” – increases a specific goods card quantity by 1.

 “trade_cards” – increases specific goods cards quantities and decreases specific

goods and/or camel card quantities by the number of cards being exchanged with the

market place.

 “sell_cards” – decreases a specific goods card quantity by the number specified

within the sale.

As an example, I have provided a table that demonstrates how the quantities of each card

type within the opponent’s hand are evaluated in every round.

Turn

Number

Total Number of

Goods Cards

Known Card

Quantities

Unknown

Card Total
Move

1 3 [0, 0, 0, 0, 0, 0, 2] 3 [“take_one_good”, “G”]

2 4 [0, 1, 0, 0, 0, 0, 2] 3 [“sell_cards”, “Clo”]

3 3 [0, 1, 0, 0, 0, 0, 2] 2
[“trade_cards”, “G”, “L”,

“—“, “D”, “D”]

- 33 -

4.3.3 Heuristic State Evaluation Function

The heuristic function was initially designed with the intention of being able to calculate the

value of a specific state. This was to be achieved using only the information known about the

state and the previous move used to get there. As the main objective of each round is to

gain more points than the opponent, I decided to focus the heuristic towards achieving this

goal. Because of this, the points gained in the previous move (including any bonus averages

obtained) and the value of the hand in the current state both needed to be considered. I also

needed to take into account the value of the estimated market to minimise the opponent’s

chances of using it for potential future profit. Thus, the following function was developed:

f(h) = points_gained + hand_value – market_value

The next challenge involved separately finding the values of both the hand and the

estimated market within the given state. To accomplish this, I first reflected on the algorithm I

used within Basic Strategy 3. This evaluated all potential next hands based only on the

goods tokens remaining (see Pseudocode C.1). The method itself was a good way of

evaluating the absolute value of each goods card within a given domain, however it did not

take into consideration other components of the state which could be critical for the future

success of the player.

Such components included any camel cards present and any bonus tokens remaining.

Because neither of these were factored, there would be no effort to try to acquire the camel

token (worth 5 points) and situations showing great promise in profit through gaining

bonuses alone could be completely overlooked. An example of this would be if a player

possessed 5 leather cards and no leather tokens remained. In this scenario, the algorithm

would evaluate that their hand was worthless. This typically would be an incorrect judgement

as an average of 9 points could still be attained in a sale through acquiring a single bonus

token.

4 3 [2, 0, 0, 0, 0, 0, 2] 1
[“take_camels”, “Cam”,

“Cam”]

5 3 [2, 0, 0, 0, 0, 0, 4] 1
[“trade_cards”, “D”, “Sil”,

“—“, “Spi”, “Clo”]

6 3 [1, 0, 0, 1, 1, 0, 4] 0 -

- 34 -

The algorithm would also assume that any quantity of each goods type within a given

domain would always be sellable if greater or equal to 1. This assumption however is untrue

for when the quantities of the diamond, gold and silver cards are lower than 2. In addition to

this, if the same algorithm was applied to a domain that included additional card probabilities

(such as the quantities found in a market after a stochastic move is performed), each

probability would be disregarded and each quantity would essentially be truncated.

In order to address these issues, I developed an alternative algorithm that would incorporate

adjustable heuristic parameters. This method would first find the value of each goods type by

using the quantities present within the domain provided and the corresponding goods tokens

that remained. Any additional probability within each quantity would also be included in this

calculation. If the quantity of a goods card type was greater than or equal to 3, a bonus

average would then be added to the value of that specific goods type.

If the quantity of a card type permitted a sale action, the value calculated for that card type

would be multiplied by the parameter k1. However, if the quantity of a card type did not

permit a sale action, the value calculated for that card type would instead be multiplied by

the parameter k2. After this, the new value for each goods type would then be summated to

find the overall value for all goods cards. The value for each camel card would then be found

by multiplying the camel total by the parameter k3. Thus, these two values were finally added

to produce the overall value of the given card domain (see Pseudocode C.4 for details).

A simplified version of the algorithm can be presented by the following heuristic formula:

card_domain_value = k1 * (sellable_card_values) +

 k2 * (unsellable_card_values) +

 k3 * (camel total)

Using this, I was then able to determine the values of both the hand and the estimated

market within a given state. Thus, the heuristic value of each potential state could now be

found (see Pseudocode C.5 for details).

- 35 -

Figure 4.3 - An example of the calculations involved when evaluating two potential next

states using the heuristic parameters k1 = 0.75, k2 = 0.25 and k3 = 1.

- 36 -

4.3.4 Expectiminimax

Using all of the components I had previously established in Sections 4.3.1, 4.3.2 and 4.3.3, I

finally had all the tools necessary to fully implement the expectiminimax algorithm. As

chance nodes were now not being included within the main body of the algorithm, I was able

to use the pseudocode from the previous research I had conducted earlier (see Figure 2.3 in

Section 2.2.2) for the main inspiration towards its overall design. However, slight

adjustments would need to be made in order for the cutoff testing to be possible. The testing

itself would use both the heuristic evaluation function and a pre-specified depth limit.

I first considered all of the features within each current state needed to represent all possible

future states. This included the information known about both players (hand quantities and

current scores), the information known about all other shared elements of the game (current

available goods tokens, remaining card number, previously sold cards and the remaining

card probabilities) and all possible moves the current player can take.

Through recursion, the algorithm would then use a depth first search to find all possible

future states within the game tree, whilst updating information about each one (e.g.

increasing each player’s score, removing sold goods tokens, adding sold cards and so on). If

a depth limit was ever reached, the move that provides the highest value based on the

evaluation made by the heuristic function (added with the current score) was returned within

the current node. Each value found would then be fed up through the game tree, selecting

the maximum value for when the node represents the current player’s turn and the minimum

value when it is the opposing player’s. When the values eventually reach the first level of the

tree, the move with the maximum payoff would be selected.

Figure 4.4 - A diagram displaying the different depth levels of a game tree, with each node

representing a state for one of the two players

- 37 -

Upon reviewing how the expectiminimax algorithm performed in a typical game, I noticed

that if the depth limit is greater than1, moves that involved selling cards to gain points were

rarely chosen. However, the hands obtained by the artificial player would often be very

valuable (e.g. hands containing five or more cards of a certain type). I realised that this was

due to the heuristic function as it would always try to minimise the opponent’s payoff by

taking (and keeping) valuable sets of cards away from the market place.

The total amount of unknown cards also had an effect on how well the algorithm could

predict next potential states in the game tree. This was because, the algorithm would only

account for the cards known in the opposing player’s hand meaning potential moves that

would be possible to perform could be missed. All of these matters would need to be

addressed when later developing the strategies.

4.3.5 Summary

Through using the expectiminimax algorithm, I have created three separate advanced

strategies that can each be used in a single play of ‘Jaipur’.

Each strategy adopts a different depth limit yet the parameters in the heuristic evaluation

function are always the same fixed values. These values were later determined in the testing

stages (see Section 5.1). Also, for accurate state prediction, the value of the depth limit only

increases once all of the opponent’s cards are known. This typically happens anywhere

between the 3rd to 6th player turn.

The parameters for the heuristic evaluation function are always the following: k1 = 0.58,

k2 = 0.38 and k3 = 1.02.

Below I have summarised how each strategy selects its next move within any state of the

game.

Advanced Strategy 1

Every move is chosen using the expectiminimax algorithm.

The depth limit is always set to 1.

Advanced Strategy 2

Every move is chosen using the expectiminimax algorithm.

- 38 -

If one or more of the opponent’s cards are not known, the current player possesses 3 or

more goods cards of the same type, or the player possesses a total of 7 goods cards, the

depth limit is set to 1.

Else, the depth limit is set to 3.

Advanced Strategy 3

Every move is chosen using the expectiminimax algorithm.

If one or more of the opponent’s cards are not known, the current player possesses 3 or

more goods cards of the same type, or the player possesses a total of 7 goods cards, the

depth limit is set to 1.

Else, the depth limit is set to 5.

- 39 -

Chapter 5 – Testing the Solution

To evaluate if I had met the main aim of the project, testing how the AI performed against

human players was a complete necessity. In order to do this, I first found the correct

parameter settings used within the heuristic function for each advanced strategy. After this,

each strategy was then played against each other to assess which one was the most

successful. Using these results, I then finally conducted tests involving three separate

participants to find if the AI was capable of defeating human players. Please note, as

previously decided in Section 2.3.4, each round was treated as a single play in every test

carried out.

5.1 Tuning Heuristic Parameters

Before the advanced strategies could be capable of making intelligent informed choices, I

first needed to find the correct parameter values for the heuristic evaluation function. To

achieve this, I decided to test Advanced Strategy 1 against Basic Strategy 3 using a

variation of pre-selected heuristic settings over a fixed number of plays. Alternatively, I

considered using two advanced strategies instead; however the idea was disregarded due to

the possibility of ambiguous results. Advanced Strategy 1 was chosen as it purely relied on

the heuristic function to assess every decision it made. This could not be said for the other

advanced strategies I had also implemented. Additionally, I chose Basic Strategy 3 as it was

the only basic strategy that made decisions without any elements of randomness. Because

of this, every decision would be fully rational and therefore most informed when compared to

the other basic strategies available.

When using this method to test a specific set of heuristic parameters over a fixed number of

plays, the average score difference between both strategies would be calculated. Once

every heuristic setting had been used, the one with the highest average score difference

would be selected as the most practical to employ. Adopting this approach would still

present the issue of how to find each set of parameters to test on. To resolve this, I used a

sequential process that used a step size within a lower and upper bound for each parameter

value. This would find a wide array of parameter combinations, thus covering a lot of

potential settings. For example, if only k1 and k2 were being considered, and both used an

upper bound of 1 and a lower bound of 0, the first four sets of parameters found using a step

size of 0.5 would be the following: (k1=0, k2=0), (k1=0.5, k2=0), (k1=1, k2=0), (k1=0, k2=0.5).

- 40 -

Test 1 Results

To establish every heuristic setting for the first test, the following bounds and step size were

used for each parameter:

- k1: Lower Bound = 0, Upper Bound = 1

- k2: Lower Bound = 0, Upper Bound = 1

- k3: Lower Bound = 0, Upper Bound = 1

- Step Size = 0.2

After this, each setting determined was each used for a total of 300 plays, and every

average score difference was calculated. The highest average score difference found was

approximately 31.12 with the subsequent parameter settings: k1=0.6, k2=0.4, k3=1 (see

Figure 5.1). All results for test 1 can be found in Appendix D.1.

Average Score Differences (k3=1)

k1 k2 = 0 k2 = 0.2 k2 = 0.4 k2 = 0.6 k2 = 0.8 k2 = 1

0 -46.4667 -9.78 -8.39333 -5.65 -6.1 -11.4033

0.2 -25.1867 10.47 14.68333 13.44333 12.40333 9.31

0.4 -12.3567 18.01333 26.59 25.6 25.05 24.87667

0.6 2.173333 18.98667 31.12333 30.85667 28.31 23.83

0.8 7.603333 16.66333 26.58 24.1 26.27333 22.21667

1 -4.72667 3.996667 12.46667 14.53667 15.69 14.78

Figure 5.1 – The average score differences of heuristic parameters where step_size = 0.2,

k1_range=0-1, k2_range=0-1 and k3=1

- 41 -

Test 2 Results

To improve on this, I decided I would perform the same test again by using each newly

found parameter value to calculate the new upper and lower bounds (using a range of 0.1).

The step size chosen would allow each parameter to have a possible total of 6 potential new

values (such as before). Thus, the following bounds and step size were used for each

parameter:

- k1: Lower Bound = 0.5, Upper Bound = 0.7

- k2: Lower Bound = 0.3, Upper Bound = 0.5

- k3: Lower Bound = 0.9, Upper Bound = 1.1

- Step Size = 0.04

After this, each setting was used for a total of 300 plays, and every average score difference

was calculated. The highest average score difference found was approximately 34.2 with the

subsequent parameter settings: k1=0.58, k2=0.38, k3=1.02 (see Figure 5.1). All results for

test 2 can be found in Appendix D.2.

Average Score Differences (k3=1.02)

k1 k2 = 0.3 k2 = 0.34 k2 = 0.38 k2 = 0.42 k2 = 0.46 k2 = 0.5

0.5 27.59333 29.45333 31.12667 30.15667 31.08333 29.18

0.54 30.91333 31.58333 30.93333 32.49 32.36 32.13333

0.58 31.59667 29.81 34.2 32.85667 33.49 31.69667

0.62 29.68667 30.04667 32.88 32.49 30.59333 33.86667

0.66 29.04 31.64667 30.21667 31.34333 32.35 31.79

0.7 28.75667 29.71667 30.27 32.01333 32.83333 30.64333

Figure 5.2 – The average score differences of heuristic parameters where step_size = 0.04,

k1_range=0.5-0.7, k2_range=0.3-0.5 and k3=1.02

- 42 -

Summary

Following the second test, I decided I would stop trying to improve upon each parameter

value. Whilst observing the results, I noticed that the majority of average score differences

found was roughly within a 5 point range. Because of this, if I was to search for a setting that

returned an even higher score difference, the improvement in value would most likely be

minimal and therefore would have very little to no impact on increasing the score obtained by

the artificial player. Thus, each advanced strategy was to use the following heuristic

parameter settings:

k1=0.58, k2=0.38, k3=1.02

5.2 Strategy Comparison

After finding the correct settings for the heuristic function, all of the strategies (defined in

Sections 4.2.3 and 4.3.6) were now ready to simulate an artificial player. To evaluate the

performance of each one, I decided to calculate the score differences for a total of 300 plays

when each strategy was used against the others available. Once the results were collected, I

would then be able to judge the best strategy to use against human players. Each score

difference would be calculated using the following formula:

SD = current_strategy_final_score - competing_strategy_final_score

 Figure 5.3 – The score differences of Basic Strategy 1 when tested against all other strategies.

- 43 -

Figure 5.6 – The score differences of Advanced Strategy 1 when tested against all other strategies.

Figure 5.5 – The score differences of Basic Strategy 3 when tested against all other strategies.

Figure 5.4 – The score differences of Basic Strategy 2 when tested against all other strategies.

- 44 -

Upon reviewing the results, I first noticed the similarity of how most of the score differences

for each strategy increase at a very steady rate. This is most likely due to the zero-sum

nature of selling commodities, as once a specific token is gained by a player, the opponent

will no longer be able to obtain it. However, peaks and troths are still visible at the lowest

and highest score differences found within each comparison. This could be explained by the

rounds that are untypical and present more advantageous situations for one player than the

other due to complete luck.

The basic strategies have performed as expected. As the artificial player adopts less

irrational choices by not selecting moves randomly, the likelihood of success seems to grow

extensively. As seen in Figures 5.3 and 5.4, when any random approach is used against one

Figure 5.7 – The score differences of Advanced Strategy 2 when tested against all other strategies.

Figure 5.8 – The score differences of Advanced Strategy 3 when tested against all other strategies.

- 45 -

that is non-random (such as Basic Strategy 3 and the advanced strategies), defeat is almost

inevitable. As previously demonstrated in Section 2.3.4, the maximum number of ‘selling’

moves a player can perform at any given state is 5 out of a potential 37. This explains why

Basic Strategy 1 always fails as no precautions are taken to ensure that points are obtained

within a single play. This is improved in Basic Strategy 2 by prioritising ‘selling’ moves, yet it

still usually fails as no countermeasures are taken to gain potential better future profit.

However, it is worth highlighting that Basic Strategy 3 has shown it has the capability of

beating all advanced strategies (see Figure 5.5), even if the probability of it achieving this is

very low. This only strengthens the theory that random agents will most often fail against

rational players, as Basic Strategy 3 only adopts greedy techniques.

As the advanced strategies show to have an almost 100% success rate against all basic

strategies, it can be strongly argued that using expectiminimax is a proficiently better method

for weighing all available move choices. By analysing Figures 5.6, 5.7 and 5.8, it becomes

evident that score differences advance by a few points as the depth limit of each search

increases.

The reason why each score difference varies only slightly between each strategy can be

explained through how the depth limits are selected by both Advanced Strategy 2 and 3.

This is because the limits are only set to be greater than 1 if certain conditions are met (e.g.

full knowledge of opponent’s hand, each card type has a quantity less than 3 and so on).

This being said, Advanced Strategy 3 seems to be the most successful as it seems to gain a

(slightly) higher score roughly 66% of the time when tested against both advanced strategies

1 and 2.

Initially, I desired to only pick one strategy for the next stage of testing yet all the advanced

strategies seem to work very efficiently against the basic strategies, and the overall score

differences for each one are also quite minor when compared. Because of this, I decided to

use all three advanced strategies to test against the human players as I was interested to

see if similar results would arise.

5.3 Human Player Tests

Using three participants, I was now ready to evaluate if the AI was capable of defeating

human players. To do this, every advanced strategy was to be used for a total of 3 plays

each and the score differences between both players would be calculated using the following

formula:

SD = AI_player_final_score - human_player_final_score

- 46 -

Because of this, positive score differences were desired as it would mean the AI was

successful in beating a human player within a specific play of the game. Each individual test

would be done in an isolated environment to ensure there were no influences from outside

parties when making each move choice.

Before tests could commence however, I first needed to ensure each participant was

comfortable with the rules and overall gameplay in order for them to all perform at a

reasonable level. This was achieved by playing the physical version of the game multiple

times as it would allow each one of them to learn and develop moderate tactics in order to

win (e.g. when to take/discard/sell specific goods cards). After this, I allowed each of them to

become familiar with the software implementation, highlighting all of the controls and how

each game component was represented.

Below, I have provided tables that display all score averages found for each advanced

strategy tested. Within each table, the average score difference has been found for each

participant against a specific strategy, and the overall average score difference has also

been calculated. Using the test results alone, it can be concluded that over the 27 individual

plays the AI had an overall 88.88% success rate.

Advanced Strategy 1 – Score Differences

Human Player Play 1 Play 2 Play 3
Average Score

Difference

1 11 22 14 15.66
2 5 18 -10 4.33
3 28 23 22 24.33
 14.77

Advanced Strategy 2 – Score Differences

Human Player Play 1 Play 2 Play 3
Average Score

Difference

1 -5 14 27 12
2 -3 6 19 7.33
3 14 10 31 18.33
 12.55

Advanced Strategy 3 – Score Differences

Human Player Play 1 Play 2 Play 3
Average Score

Difference

1 17 17 26 20
2 19 30 29 26
3 25 23 21 23

 23

- 47 -

Chapter 6 – Conclusion

To summarise, I will conduct an evaluation of my entire project. In doing so, a verdict will be

made to decide whether the final implementation meets the project aim. This will be followed

by a personal reflection of my own performance and experiences, and finally a brief

discussion on how the work I have produced could be extended in the future.

6.1 Aim and Objectives

To evaluate if the main aim of the project was achieved, I will review the objectives that were

originally defined in Section 1.3.

1) Produce a playable implementation of the card game ‘Jaipur’.

A platform for the game was created in Java which allowed for two players (as

discussed in Sections 3.1, 3.2, 3.3 and 3.4). Each core game element was

represented by a unique class and users were able to interact using a clear text-

based interface.

2) Perform a background study of the techniques currently used within game

playing software.

A literature review in Section 2.2 was conducted to discover methods previously used

to simulate artificial players within games. In addition to this, extra research in Game

Theory was conducted within Section 2.1 followed by an in-depth analysis of ‘Jaipur’

within Section 2.3. Doing this gave me further insight of how to approach the main

task.

3) Develop an AI-style algorithm to play the game.

In Sections 4.2 and 4.3, six separate strategies were implemented for the artificial

player to use in a single play of the game. This included adopting both basic and

advanced tactics such as random/greedy decision processes and an expectiminimax

algorithm which incorporated heuristic state evaluation functions.

- 48 -

4) Test and evaluate the algorithm against human players.

After all strategies were compared and tested in Section 5.2, the three that utilized

the expectiminimax algorithm were chosen to use against human players. Results

showed that each of these strategies had a near perfect success rate and allowed

the AI to defeat human players (see Section 5.3).

5) Compare the algorithm and test results against existing studies involving other

adversarial games with AI implementations.

Due to time constraints, I was not able to compare my solution and test results to

other similar studies. This being said, both objectives 2 and 3 produced outputs that

strengthened the final solution which exceeded the minimum requirements for

essential stages of the project. Because of this reason, I feel it was acceptable to

abandon this objective.

Overall, I feel the aim of this project has been met as the AI has shown it is capable of

defeating human players when playing the game multiple times. However, as the game

‘Jaipur’ is rather unknown, it is hard to determine if the advanced strategies produced would

perform well against expert level players. For the participants used in testing, it was their first

time playing the game, thus the results only prove that the strategies are effective against

rational players that perform moderately at best. Nonetheless, the main aim was still

achieved.

6.2 Personal Reflection

Ultimately, I have found this experience to be both challenging and difficult in certain places,

however through drive and determination I have been able to produce a good final solution

given the time and resources I had available to me. Over the last 12 weeks, this project has

been very enjoyable and I have learnt a lot in regards to implementing an agent that can

make intelligent decisions.

Saying this, my general skills in time management seemed to create a couple of recurring

issues. Even though the majority of the main tasks were completed within their original

timeframes, I did not account for the time needed between each one to update the written

report. Because of this, on a number of occasions the report writing was put on hold and

essentially had to be pushed back. This eventually led to a steadily increasing backlog and

as a consequence the final objective had to be scrapped. I also did not consider other

- 49 -

matters outside of the project meaning the number of days initially assigned to each task

were not necessarily an accurate representation of the days actually needed to complete

each one.

To avoid this in future projects, I would advise that specific allocated time slots be made after

each critical stage has been completed. This would ensure completing the report is a

gradual process in contrast to it being left for the end of the main project scope. Additionally,

for each set task I would overestimate the expected time needed to complete each one

when establishing deadlines as this would account for days where no project work is done.

I was lucky that each stage and task was completed relatively on schedule even though a

slightly modular process was taken in the main methodology. In future to minimise risk,

instead of leaving the testing until all coding is finalised I would alternatively test each

individual feature of the solution as it is implemented. Overall, I feel in order to achieve the

best possible output, selecting a project which centres around something you are passionate

about is key to success. Doing so will allow you to both enjoy the learning process and all

stages of implementation. This is something I did, and as a result the quality of the outcome

was generally good.

6.3 Future Work

Additional Testing

As stated earlier, all of the participants involved in the testing were in no way expert players

in either ‘Jaipur’ or other similar games. To further evaluate the performance of each existing

advanced strategy, it’d be interesting to observe whether the same results and trends

reappear whilst testing players of this level.

Additional Strategies

Improving on the techniques used within the existing advanced strategies may produce

agents that perform better. This could include cutting down on game tree search space

(through pruning methods) to allow deeper searches. Other heuristic functions could also be

made to evaluate each state value by factoring different aspects of the game not previously

considered such as the remaining card number.

Alternative Methods

Other approaches could be used to tackle the problem via different means. As discussed in

Section 2.2, a strategy could be constructed through machine learning techniques such as

- 50 -

TD and Q-Learning. Also, instead of teaching an agent how to play a specific game it could

be manufactured to play multiple unknown games using a general game playing (GGP)

method.

- 51 -

List of References

[1] Newell, A., Shaw, J. and Simon, H. (1958) Chess-Playing Programs and the Problem of

Complexity, IBM Journal of Research and Development, 2(4), pages 320-335.

[2] Samuel, A. (1959) Some Studies in Machine Learning Using the Game of Checkers, IBM

Journal of Research and Development, 3(3), pages 210-229.

[3] Zobrist, A. (1969) A model of visual organization for the game of GO, AFIPS Spring Joint

Computing Conference 1969, pages 103-112.

[4] Keeler, E. and Spencer, J. (1975), Optimal Doubling in Backgammon, Operations Research,

23(6), pages 1063-1071.

[5] Heule, M.J.H. and Rothkrantz, L.J.M. (2007) Solving Games: Dependence of applicable

solving procedures, Science of Computer Programming 67, 1, pages 106–107, 109 and 114.

[6] Koller, D. and Pfeffer, A. (1995) Generating and Solving Imperfect Information Games,

Proceedings of the 14th international joint conference on Artificial intelligence, page 1185.

[7] Snidal, D. (1985). The Game Theory of International Politics. World Politics, 38(1), pages 25-

57.

[8] Straffin, P. and Taylor, A. (1997). Mathematics and Politics. The College Mathematics Journal,

28(4).

[9] Sigmund, K. and Nowak, M. (1999). Evolutionary game theory. Current Biology, 9(14).

[10] Myerson, R. (1992). Game Theory - Analysis of Conflict. Long Range Planning, 25(2), page

130.

[11] Gintis, H. (2005). Behavioral Game Theory and Contemporary Economic Theory. Analyse &

Kritik, 27(1).

[12] Prisner, E. (2014). Game Theory Through Examples. 1st edition, pages 1-2, 5.

[13] Miller, N. (2006). Introduction to Game Theory, pages 10-12.

[14] Ferguson, T. (2014). Game Theory: Part II. Two-Person Zero-Sum Games. 2nd edition, page 4.

- 52 -

[15] Leyton-Brown, K. and Shoham, Y. (2008). Essentials of Game Theory: A Concise,

Multidisciplinary Introduction. 1st edition, pages 4-6.

[16] Cornuejols, G. and Trick, M. (1995). Quantitative Methods for the Management Sciences, page

132.

[17] Turocy, T. and Stengel, B. (2002). Game Theory. Encyclopedia of Information Systems, 2, page

22.

[18] Levin, J. (2002). Games of Incomplete Information. Available at:

http://web.stanford.edu/~jdlevin/Econ%20203/Bayesian.pdf (Accessed 2 Apr. 2017).

[19] Kockesen, L. and Ok, E. (2007). An Introduction to Game Theory. 1st edition, page73.

[20] Shor, M. (2005). Non-Cooperative Games. Available at:

http://www.gametheory.net/dictionary/Non-CooperativeGame.html (Accessed 1 Apr. 2017).

[21] Chalkiadakis, G., Elkind, E. and Wooldridge, M. (2012). Cooperative Game Theory: Basic

Concepts and Computational Challenges. IEEE Intelligent Systems, 27(3), page 86.

[22] Hotz, H. (2006). A Short Introduction To Game Theory, pages 3-4.

[23] Mullins, Justin (2007) Checkers ’solved’ after years of number crunching. Available at:

https://www.newscientist.com/article/dn12296-checkers-solved-after-years-of-number-

crunching (Accessed: 4 February 2017).

[24] Barriga, N.A. (2014) Leveraging Parallel Architectures in AI Search Algorithms for Games,

Tenth Artificial Intelligence and Interactive Digital Entertainment Conference, page 2.

[25] Javarone, M.A. (2015) Poker as a skill game: Rational versus irrational behaviours, Journal of

Statistical Mechanics: Theory and Experiment, pages 2-4.

[26] Russell, S. and Norvig, P. (1995). Artificial Intelligence A Modern Approach. 1st edition, pages

123-126, 129-136.

[27] Shannon. C. (1949) Programming a Computer for Playing Chess. Philosophical Magazine, 41,

page 5.

[28] Hauk, T., Buro, M. and Schaeffer, J. (2004) *–Minimax Performance in Backgammon.

Proceedings of the Computers and Games Conference, page 3.

- 53 -

[29] Binmore, K. (2007) Playing For Real: A Text On Game Theory. 1st edition, page 233.

[30] Yen, S. Chou, C. Kao, K. and Wu, I. (2014) Design and Implementation of Chinese Dark

Chess Programs. IEEE Transactions on Computational Intelligence and AI in Games, pages

67-68.

[31] Melko, E. and Nagy, B. (2007) Optimal strategy in games with chance nodes. Acta

Cybernetica, 18, page 172.

[32] Lamanosa, R., Lim, K., Manarang, I., Sagum, R. and Vitug, M. (2013) Expectimax

Enhancement through Parallel Search for Non-Deterministic Games. International Journal of

Future Computer and Communication, 2(5), page 466.

[33] Hsu, F. (1999) IBM's Deep Blue Chess Grandmaster Chips. IEEE Micro, 19, page 72.

[34] Marsland, S. (2014) Machine Learning An Algorithmic Perspective. 2nd Edition, pages 6-7,

302-310.

[35] Kunz, R. (2013) An Introduction to Temporal Difference Learning, page 4.

[36] Genesereth, M., Love, N. and Pell, B. (2005) General Game Playing: Overview of the AAAI

Competition. AI Magazine, 26(2), page 63.

[37] Levine, J., Congdon, C., Ebner, M., Kendall, G., Lucas, S., Miikkulainen, R., Schual, T. and

Thompson, T. (1998) General Video Game Playing.

[38] Board Game Arena. Available at: https://en.boardgamearena.com (Accessed: 1 April 2017).

[39] Gilmore, S. (2007) ‘Advances in Programming Languages: Memory management’, UG4

Advances in Programming Languages, pages 8, 10.

- 54 -

Appendix A

External Materials

A.1 Code Repository

All of the code implemented and used in this project is available on GitLab under the

following URL: https://gitlab.com/ed12j2ob/third_year_project

- 55 -

Appendix B

Ethical Issues Addressed

In the testing stage of my project, I used three participants to assess how well the AI

competed against human players. All volunteers were provided with an information

document about the project, explaining the use of the research collected. After this, they all

separately signed consent forms which agreed for the results to be anonymously published

within the final version of the report. These will be submitted in a detached envelope.

- 56 -

Appendix C

Pseudocode

C.1 Algorithm 1

//Input: an array C of card quantities

 an array D_tokens of diamond token values

 an array G_tokens of gold token values

 an array Sil_tokens of silver token values

 an array Clo_tokens of cloth token values

 an array Spi_tokens of spice token values

 an array L_tokens of leather token values

//Output: the current total value of array C

ALGOROTHM exact_value_of_cards(C, D_tokens, G_tokens, Sil_tokens,

 Clo_tokens, Spi_tokens, L_tokens)

 total_card_value ← 0;

 for i ← 0 to C[0] do

 total_card_value += D_tokens[i];

 for i ← 0 to C[1] do

 total_card_value += G_tokens[i];

 for i ← 0 to C[2] do

 total_card_value += Sil_tokens[i];

 for i ← 0 to C[3] do

 total_card_value += Clo_tokens[i];

 for i ← 0 to C[4] do

 total_card_value += Spi_tokens[i];

 for i ← 0 to C[5] do

 total_card_value += L_tokens[i];

 return total_card_value;

- 57 -

C.2 Algorithm 2

//Input: an array H of current hand quantities

 an array M of current market quantities

 an array S of sold card quantities

//Output: an array of all remaining card type probabilities

 ALGOROTHM remaining_card_probabilities(H, M, S)

remaining_card_quant ← [(H[0] + M[0] + S[0]), (H[1] + M[1] + S[1]),

 (H[2] + M[2] + S[2]), (H[3] + M[3] + S[3]),

 (H[4] + M[4] + S[4]), (H[5] + M[5] + S[5]),

 (H[6] + M[6] + S[6])];

total_remaining_cards ← remaining_card_quant[0] +

 remaining_card_quant[1] +

 remaining_card_quant[2] +

 remaining_card_quant[3] +

 remaining_card_quant[4] +

 remaining_card_quant[5] +

 remaining_card_quant[6];

 remaining_card_prob ← [remaining_card_quant[0] / total_remaining_cards,

 remaining_card_quant[1] / total_remaining_cards,

 remaining_card_quant[2] / total_remaining_cards,

 remaining_card_quant[3] / total_remaining_cards,

 remaining_card_quant[4] / total_remaining_cards,

 remaining_card_quant[5] / total_remaining_cards,

 remaining_card_quant[6] / total_remaining_cards];

 return remaining_card_prob;

- 58 -

C.3 Algorithm 3

//Input: an array M of determined next market quantities

 an array P of remaining card probabilities

 a value n of the number of new cards taken from the deck

//Output: an array of the next market quantities with new card
 probability

 ALGOROTHM next_market_quantities_with_prob(M, P, n)

 M_with_prob ← M;

for i ← 0 to n do

 M_with_prob[0] += P[0];

 M_with_prob[1] += P[1];

 M_with_prob[2] += P[2];

 M_with_prob[3] += P[3];

 M_with_prob[4] += P[4];

 M_with_prob[5] += P[5];

 M_with_prob[6] += P[6];

 return M_with_prob;

- 59 -

C.4 Algorithm 4

//Input: an array C of card quantities

 an array D_tokens of diamond token values

 an array G_tokens of gold token values

 an array Sil_tokens of silver token values

 an array Clo_tokens of cloth token values

 an array Spi_tokens of spice token values

 an array L_tokens of leather token values

 a heuristic weight value k1

 a heuristic weight value k2

 a heuristic weight value k3

//Output: the heuristic value of array C

ALGOROTHM heuristic_value_of_cards(C, D_tokens, G_tokens, Sil_tokens,
 Clo_tokens, Spi_tokens, L_tokens,
 k1, k2, k3)

 D_w ← k1; G_w ← k1; Sil_w ← k1; Clo_w ← k1; Spi_w ← k1; L_w ← k1;

if (C[0] < 2) do

 D_w ← k2;

if (C[1] < 2) do

 G_w ← k2;

if (C[2] < 2) do

 Sil_w ← k2;

 total_card_value ← 0;

 for i ← 0 to C[0] do

 total_card_value += D_tokens[i] * D_w;

if (C[0] % 1) > 0 do

 total_card_value += (D_tokens[C[0] - 1] * (C[0] % 1)) * D_w;

 for i ← 0 to C[1] do

 total_card_value += G_tokens[i] * G_w;

- 60 -

if (C[1] % 1) > 0 do

 total_card_value += (G_tokens[C[1] - 1] * (C[1] % 1)) * G_w;

 for i ← 0 to C[2] do

 total_card_value += Sil_tokens[i] * Sil_w;

if (C[2] % 1) > 0 do

 total_card_value += (Sil_tokens[C[2] - 1] * (C[2] % 1)) * Sil_w;

 for i ← 0 to C[3] do

 total_card_value += Clo_tokens[i] * Clo_w;

if (C[3] % 1) > 0 do

 total_card_value += (Clo_tokens[C[3] - 1] * (C[3] % 1)) * Clo_w;

 for i ← 0 to C[4] do

 total_card_value += Spi_tokens[i] * Spi_w;

if (C[4] % 1) > 0 do

 total_card_value += (Spi_tokens[C[4] - 1] * (C[4] % 1)) * Spi_w;

 for i ← 0 to C[5] do

 total_card_value += L_tokens[i] * L_w;

if (C[5] % 1) > 0 do

 total_card_value += (L_tokens[C[5] - 1] * (C[5] % 1));

 return total_card_value += (C[6] * k3);

 return total_card_value;

- 61 -

C.5 Algorithm 5

//Input: an array H of hand quantities

 an array M of market quantities

 a value p of points gained after sale (if one occurred)

 a value q of quantity of cards in sale (if one occurred)

 an array D_tokens of diamond token values (after sale)

 an array G_tokens of gold token values (after sale)

 an array Sil_tokens of silver token values (after sale)

 an array Clo_tokens of cloth token values (after sale)

 an array Spi_tokens of spice token values (after sale)

 an array L_tokens of leather token values(after sale)

 a heuristic weight value k1

 a heuristic weight value k2

 a heuristic weight value k3

//Output: the heuristic value of current state

ALGOROTHM heuristic_value_of_state(H, M, p, q, D_tokens, G_tokens,
 Sil_tokens, Clo_tokens, Spi_tokens,
 L_tokens, k1, k2, k3)

if q == 3 do

 p += 2

if q == 4 do

 p += 5

 if q == 5 do

 p += 9

 hand_heuristic_value ← heuristic_value_of_cards(H, D_tokens, G_tokens,
 Sil_tokens, Clo_tokens, Spi_tokens,
 L_tokens, k1, k2, k3);

 market_heuristic_value ← heuristic_value_of_cards(M, D_tokens,
 G_tokens, Sil_tokens, Clo_tokens,
 Spi_tokens, L_tokens, k1, k2, k3);

 total_state_value ← p + hand_heuristic_value + market_heuristic_value;

 return total_state_value;

- 62 -

Appendix D

Heuristic Parameter Tests

D.1 Test 1 Results

Figure D.1.1 – Graphs displaying the average score differences of heuristic

parameters where step_size = 0.2, k1_range=0-1, k2_range=0-1 and k3_range=0-0.4

- 63 -

Figure D.1.2 – Graphs displaying the average score differences of heuristic

parameters where step_size = 0.2, k1_range=0-1, k2_range=0-1 and k3_range=0.6-1

- 64 -

Average Score Differences (k3=0)

k1 k2 = 0 k2 = 0.2 k2 = 0.4 k2 = 0.6 k2 = 0.8 k2 = 1

0 -42.13 -13.0967 -14.4067 -13.5733 -15.69 -15.5867

0.2 -3.76 14.48667 13.7 12.39667 8.35 5.336667

0.4 -4.93333 17.96333 20.8 18.57 15.77333 16.45

0.6 -4.73667 12.03667 20.12 20.60333 18.27333 18.43667

0.8 -5.41 6.956667 16.12667 19.90333 17.26667 18.01667

1 -5.26 -0.26667 9.98 14.72667 13.45333 11.79667

Average Score Differences (k3=0.2)

k1 k2 = 0 k2 = 0.2 k2 = 0.4 k2 = 0.6 k2 = 0.8 k2 = 1

0 -44.03 -9.05667 -23.9667 -25.5067 -24.0033 -27.33

0.2 -4.24 21.74 16.22 14.77 12.76333 3.88

0.4 -0.20333 17.35333 20.95667 19.65333 16.2 14.45

0.6 0.193333 12.67667 19.79 19.69667 18.76667 18.03667

0.8 -2.96 6.893333 16.08333 16.47333 18.55333 18.19333

1 -6.5 2.566667 8.906667 13.29333 15.3 12.58

Average Score Differences (k3=0.4)

k1 k2 = 0 k2 = 0.2 k2 = 0.4 k2 = 0.6 k2 = 0.8 k2 = 1

0 -44.5733 -4.52 -9.93667 -14.9733 -25.23 -26.3267

0.2 -10.5 25.91333 22.19333 21.61 15.81 9.16

0.4 1.97 23.83667 24.83 20.5 20.11667 17.10333

0.6 4.673333 17.86333 22.53 21.57333 20.43333 16.46667

0.8 4.033333 11.94 15.61333 18.62 17.29667 16.87667

1 -3.94333 3.123333 8.36 12.05667 13.35 13.97667

Figure D.1.3 – Tables displaying the average score differences of heuristic parameters

where step_size = 0.2, k1_range=0-1, k2_range=0-1 and k3_range=0-0.4

- 65 -

Average Score Differences (k3=0.6)

k1 k2 = 0 k2 = 0.2 k2 = 0.4 k2 = 0.6 k2 = 0.8 k2 = 1

0 -44.1 -9.37 -3.43667 -7.03333 -16.2733 -17.4733

0.2 -18.8867 21.21333 21.08667 17.06333 9.943333 10.95

0.4 -1.64333 29.48333 28.55667 26.74 23.23667 23.9

0.6 6.11 22.60333 26.42333 24.72333 23.22 20.75

0.8 7.746667 16.35 19.70667 19.73667 17.31 17.67667

1 -2.71333 6.723333 9.916667 14.81333 13.01333 14.63333

Average Score Differences (k3=0.8)

k1 k2 = 0 k2 = 0.2 k2 = 0.4 k2 = 0.6 k2 = 0.8 k2 = 1

0 -45.3967 -7.36667 -5.69667 -3.63 -8.65667 -15.91

0.2 -23.65 16.69 14.84333 14.88667 12.04 9.086667

0.4 -7.25333 24.42 30.79667 27.87 24.24333 24.64

0.6 4.453333 26.83333 30.61 28.84667 26.89 23.57667

0.8 7.79 18.34667 25.15333 24.36 23.36333 20.33

1 -2.54 6.703333 14.69 15.23 12.76 13.42333

Average Score Differences (k3=1)

k1 k2 = 0 k2 = 0.2 k2 = 0.4 k2 = 0.6 k2 = 0.8 k2 = 1

0 -46.4667 -9.78 -8.39333 -5.65 -6.1 -11.4033

0.2 -25.1867 10.47 14.68333 13.44333 12.40333 9.31

0.4 -12.3567 18.01333 26.59 25.6 25.05 24.87667

0.6 2.173333 18.98667 31.12333 30.85667 28.31 23.83

0.8 7.603333 16.66333 26.58 24.1 26.27333 22.21667

1 -4.72667 3.996667 12.46667 14.53667 15.69 14.78

Figure D.1.4 – Tables displaying the average score differences of heuristic

parameters where step_size = 0.2, k1_range=0-1, k2_range=0-1 and k3_range=0.6-1

- 66 -

D.2 Test 2 Results

Figure D.2.1 – Graphs displaying the average score differences of heuristic parameters

where step_size = 0.04, k1_range=0.5-0.7, k2_range=0.3-0.5 and k3_range=0.9-0.98

- 67 -

Figure D.2.2 – Graphs displaying the average score differences of heuristic parameters

where step_size = 0.04, k1_range=0.5-0.7, k2_range=0.3-0.5 and k3_range=1.02-1.1

- 68 -

Average Score Differences (k3=0.9)

k1 k2 = 0.3 k2 = 0.34 k2 = 0.38 k2 = 0.42 k2 = 0.46 k2 = 0.5

0.5 32.05 31.99667 33.01333 33.21333 31.66667 30.43

0.54 30.18 32.71 30.70667 31.45 31.48667 31.19

0.58 30.01333 30.68667 31.62333 30.58667 30.56 31.71

0.62 29.67667 32.8 33.09333 32.04667 32.39 30.93667

0.66 30.18333 30.8 30.54333 30.84667 29.47667 30.07

0.7 27.41 28.67 29.89667 31.02 29.42333 29.73

Average Score Differences (k3=0.94)

k1 k2 = 0.3 k2 = 0.34 k2 = 0.38 k2 = 0.42 k2 = 0.46 k2 = 0.5

0.5 29.86 31.70333 31.29667 31.87667 31.98333 31.38667

0.54 32.50333 31.85667 32.11 31.01 32.35333 32.01667

0.58 30.16333 31.14333 32.72333 29.96 33.22333 31.57333

0.62 29.45667 31.34 30.71667 31.35333 30.63333 31.52667

0.66 29.86 31.92 31.42667 32.15667 31.21333 33.05

0.7 30.45667 29.09333 29.6 31.81 29.57667 31.06333

Average Score Differences (k3=0.98)

k1 k2 = 0.3 k2 = 0.34 k2 = 0.38 k2 = 0.42 k2 = 0.46 k2 = 0.5

0.5 30.80667 31.69333 33.86333 32.74333 34.11 32.14333

0.54 29.88667 33.48667 30.52333 33.59667 32.34667 32.58

0.58 29.64667 31.22 31.98667 32.38 31.35667 31.99333

0.62 29.16 32.10667 32.26333 31.61 31.10333 32.25667

0.66 29.57333 28.81333 31.47333 32.75 32.94667 31.23333

0.7 27.35 28.60667 31.23 30.97333 29.46333 30.52667

Figure D.2.3 – Tables displaying the average score differences of heuristic parameters

where step_size = 0.04, k1_range=0.5-0.7, k2_range=0.3-0.5 and k3_range=0.9-0.98

- 69 -

Average Score Differences (k3=1.02)

k1 k2 = 0.3 k2 = 0.34 k2 = 0.38 k2 = 0.42 k2 = 0.46 k2 = 0.5

0.5 27.59333 29.45333 31.12667 30.15667 31.08333 29.18

0.54 30.91333 31.58333 30.93333 32.49 32.36 32.13333

0.58 31.59667 29.81 34.2 32.85667 33.49 31.69667

0.62 29.68667 30.04667 32.88 32.49 30.59333 33.86667

0.66 29.04 31.64667 30.21667 31.34333 32.35 31.79

0.7 28.75667 29.71667 30.27 32.01333 32.83333 30.64333

Average Score Differences (k3=1.06)

k1 k2 = 0.3 k2 = 0.34 k2 = 0.38 k2 = 0.42 k2 = 0.46 k2 = 0.5

0.5 29.15 30.47 30.40333 31.85667 29.32333 30.02333

0.54 30.58 30.17667 30.34 29.37667 33.68667 32.43

0.58 30.68 31.33667 31.96 32.73 33.43333 33.13667

0.62 31.11333 31.96 33.58 31.81 31.96 33.68667

0.66 29.39333 30.88333 30.07667 31.00667 32.14 30.78

0.7 26.47333 29.22667 30.77 30.09333 31.13 31.15

Average Score Differences (k3=1.1)

k1 k2 = 0.3 k2 = 0.34 k2 = 0.38 k2 = 0.42 k2 = 0.46 k2 = 0.5

0.5 26.65333 28.94333 28.47333 28.03 29.46667 31.19333

0.54 28.31 30.31333 31.13333 29.85 31.15 32.47

0.58 30.06667 30.27667 30.51 33.76 33.54333 33.41667

0.62 27.45333 30.76 32.12667 31.85 31.35667 31.13333

0.66 29.36 29.06667 30.76333 31.27333 31.33 31.84333

0.7 29.35667 28.87333 31.48667 31.29667 31.7 31.89667

Figure D.2.4 – Tables displaying the average score differences of heuristic parameters

where step_size = 0.04, k1_range=0.5-0.7, k2_range=0.3-0.5 and k3_range=1.02-1.1

