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Summary 

This project investigates various artificial intelligence techniques as well as an artificial intelligence 

player that can play the board game Monopoly. 
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Chapter One 

Project Outline 

1.1 Introduction 

There has been much time devoted to developing Artificial Intelligence (AI) programs that achieve the 

same playing ability, if not better, of a human in a number of classic board games such as Chess, 

Checkers and Connect-Four. Subsequently, it generated much success, to the degree that many of these 

classic games now have programs that can beat the best human players [1][2][3]. A lot of this 

development has been because of their use of techniques such as Minimax and Alpha-beta pruning 

which had originated from Artificial Intelligence algorithms for game playing. This fascination with 

strategic games and the ability to simulate a player that chooses the most effective move (in relation to 

the overall outcome of the game) has captured the focus of many professionals since the start of artificial 

intelligence [4]. 

However, not all games have had the same success due to the fact that there are games where move-

making becomes non-deterministic. This is due to the fact that the entire game sate is not visible to each 

player, as each player’s own information is not revealed to the rest [5].  Games that fall under this 

category are Poker and Bridge, and are labelled a different classification of game as a consequence. 

1.2 Aims 

The aim of this project is to attempt to successfully create an artificial player, which possesses the 

optimal strategy in its tested set, to play Monopoly. Results from testing can be slightly inconsistent due 

to the unpredictable nature of the dice. When developing this project, it is expected that the most 

intriguing and challenging part will be trying to simulate the aspect of dealing and buying properties, 

all in accordance to a strategy. 

1.3 Objectives 

The objectives set has been used as a check-list to ensure that the project remains on track in addition 

to bringing organisation and structure throughout. 

1. Investigate the different uses of AI techniques such as MiniMax and Alpha-beta pruning. 

2. Develop a software that can play Monopoly in accordance to its rules 

3.   Develop an AI algorithm to play the game of Monopoly 

4.   Investigate which strategies are ‘better’ at playing the game 
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Figure 1.1: Monopoly Game Board 

1.4 Plans 

There are two types of plans that will be discussed, the long term and the short term plan. The project 

is structured so that much of the work is to be done in Semester 2 as there will be less workload 

involving assignments for other modules as well as exam preparation 

Semester 1 - the focus was to shape the project conceptually by gaining knowledge on how the game 

would be structured. This was done through much background research with regards to existing 

literature of a similar nature. The decision on the choice of game to be implemented was based on 

several factors; the difficulty of representing the game state and which areas would be most challenging. 

Through looking at previous projects that were similar it was decided that Monopoly would provide the 

complexity and challenge that was wanted from this project, whilst pulling together AI techniques.   

Semester 2 – the majority of the project would develop in Semester 2 as key concepts and ideas 

intertwine as well as most of the coding. In terms of the report write-up it has been organised so that a 

large section of it would be done during the Easter break. 

  

 
 

 

 

   Figure 1.2: Gantt Chart for Project 
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1.5 Deliverable 

A Final Project Report that will provide a literature review on Game Theory and AI techniques, as well 

as the actual design and creation process of any resultant software that will have been created. Including 

the details of testing results. The project will also include prototype software which implements an AI 

with the ability to play Monopoly as well as the subsequent results of each tested version of said 

software. 

1.6 Minimum Requirements 

Develop a prototype software that determines which AI technique can be considered most effective in 
playing Monopoly. 

1.7 Methodology 

Given the nature of the project, a strict regime would not be appropriate. Methods and techniques are 
continuously changing as more background research is accumulated. Thus, there has been little 
meticulous planning and a rigid structure put in place at the very beginning of this project. As traditional 
techniques are set out to build upon previous work, a rigid structure is not found to be the best method 
in this particular case [6].  A preferred agile approach was adopted because it realises that change needs 
to be managed, not avoided, something in which is inevitable in this project [6]. Much of the software 
development process will occur in Semester 2, but it will be set out in a very scrum-like method. The 
details of which will be decided nearer to the time. There will be changes to the software constantly and 
so it would only be appropriate and for testing to occur during each sprint which will allow the project 
to evolve naturally and smoothly. 
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Chapter Two 

Background Research 

2.1 Introduction 

The need for background research is essential in order to gather the information and knowledge required 

to achieve the aims of this project. There has already been research and projects that have been carried 

out that are related to my project which can be used to aid, guide and motivate its direction. 

Consequently, the background research would provide a strong foundation in which my project would 

then build upon. 

2.2 Game Theory 

Game Theory has its historical origins in 1928, when Jon Von Neumann, through his analysis of the 

parlour games, realised the practicability of his methods when analysing economic problems. It is 

suggested that game theory is the study of strategic interaction between a set of individuals [7]. Strategic 

interaction is the principle that individuals will act accordingly to their surroundings and it is this that 

will help construct their strategy [8].  It considers the investigation of two or more conflicting situations 

including the interaction between players and the consequences of each players’ actions [9]. 

2.2.1 Game Components 

The term “game” is not only relevant in game theory but refers to a situation in which individuals or 

independent actors share formal rules and consequences [10]. To be able to investigate games and 

gaming strategies, it is vital to know the fundamental basics needed to create a game. These different 

components are [18]: 

Rules: They provide each player with strict boundaries that must be followed as it identifies what is 

legal and illegal in a game.  These rules help players to form strategies and discover possible moves 

that they can make. 

Outcomes: Each game can have various possible outcomes, whereby the outcome is determined by the 

collective decisions made by the player/s. 

Payoffs: Each outcome creates a payoff for each player, they can differ from each other. Each player 

wants a better payoff, the payoff that each player wants is to win the game. 

Uncertainty of the Outcome: As the outcome is determined by a combination of a player’s moves it 

creates an element of uncertainty as you are not aware of each player’s move until after they have made 

it, leaving a sense of unpredictability particularly if the game state is either fully or partially hidden.  

Also, in a single player game there will be an element of chance.� 
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Decision-making: In order for a game to progress, players need to make decisions at each stage. These 

decisions then can then be analysed using game theory. 

No cheating: Game theory always follow the rules and if a player is not abiding by the rules of the 

game it is classified as cheating. 

2.2.2 Game Terminology 

Game: Illustrated by a collection of rules 

State: Given point in time or stage of a game using the existing components 

Play: Instance of a game 

Move: A decision made by the player at a given state 

Strategy: Is a complete collection of moves for each state [11]. This plan influences a player’s decision 

making. 

Rational Behaviour: Each player will try to increase their chances of a better payoff whilst being aware 

that their opponent is attempting to do the same. 

2.2.3   Game Classifications 

Perfect and Imperfect Information Games 

A game has perfect information if every player has full knowledge and is perfectly informed of all 

previous events leading up to the current game state, for all its players, and are able to select their next 

move using the information provided. Perfect information games provide the same level of information 

to each of their players [12]. Monopoly is a perfect information game as each player’s property cards 

are on full display, their cash is fully visible to all players and each game state is on full show. This 

visibility influences a player’s next move and strategy as they have full knowledge of the cards or pieces 

that each player holds and the payoffs for each possible move. For example, in Monopoly each player 

would decide to accept a deal based upon whether the payoff would be good for them. More experienced 

players would also consider their opponents’ payoff too. 

In contrast, imperfect information games are games where each player has little or no knowledge about 

any state. Players are unaware of the actions or moves made by their opponents but they can predict 

their opponents’ strategy or future actions [13]. 

It is vital to know the difference between perfect and complete information games. In complete 
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information games, all players will be aware of the structure of the game but may not be able to see all 

of the moves made previously by the other players [14]. For example, in a card game every player is 

aware of the objectives of the game but each player keeps their cards hidden, this would be classed as 

an imperfect but complete information game.   

Deterministic and Stochastic Games 

A game is considered deterministic if whenever a player performs a move in a specific state in a game, 

the consequence of that move will always remain the same. Any moves made by any of the players are 

not subject to chance [15]. There are no other influences or elements of randomness that determines the 

outcome of the move. Subsequently, Monopoly is not deterministic due to the randomness of a dice, 

there is an element of chance and luck [15].  Deterministic games are Chess, Checkers and Go etc. If, 

for example, we take the game Chess, the possible outcomes of a move purely depend on the position 

of the other pieces on the board and the successive states that lead up to the current state [16]. The list 

of possibilities only depends on those two things, there is no element of randomness. 

 

 

 

 

Figure 2.1: Chess Game Board 

On the other hand, games that do possess that element of luck and randomness would be labeled as non-

deterministic or stochastic. This does include games where none of the players are making a choice but 

it is influenced by an outside factor such as a roll of a dice or shuffling of cards. For example, the game 

Backgammon, which is a two player, zero sum game, is also stochastic because before each player 

makes their next move it depends on a roll of a dice. Therefore, the set of possible moves for the player 

is solely determined upon the randomness and luck of the dice [17]. We could define the notion of 

randomness as providing little predictability on the outcome of events or the lack of pattern. However, 

it is key to note that there is research that suggests that a dice is not completely random and that games 

can contain both deterministic and non-deterministic elements. 

Zero-Sum or Non-Zero Sum 

A game is called zero-sum if the sum of payoffs equals zero for any outcome [18]. Essentially, this 

means that whenever a player gains it is equivalent to the opponent’s loss, so the net difference is zero 

[19]. Therefore, in order to get a positive payoff another player needs to have a negative one [18]. A 
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well-known example of a zero-sum game would be Matching Pennies, where you have a payoff of 1 

for player A if the pennies match and so a -1 payoff for Player B and vice versa, leaving the net payoff 

will always be zero [18]. It should be pointed out that Matching Pennies is also a symmetric game.  

Zero-Sum games are less common than its counterpart, non-zero sum. 

 

 

 

 

 

Figure 2.2: Payoff in Matching Pennies 

Non-Zero Sum games represent the dynamics of real world problems, as sometimes no optimal solution 

can be found and things are not as straight forward [20]. Having multiple winners is an example of a 

non-zero sum game as it highlights that the win of a player is not at the expense of another, this element 

is what makes non-zero sum games non–strictly competitive as opposed to zero sum games that are 

strictly competitive [20]. Games can have both zero sum and non-zero sum elements and Monopoly is 

an example of this. Monopoly requires there to be one winner at the expense of the loss of others whilst 

still needing to cooperate with its opponents when buying and selling properties. 

One, Two and N-Player Games 

Games that require a finite number of players are classified as n-player games, where n denotes the 

maximum number of players [12]. Monopoly is as a two to eight player game. Although, the number 

of players can be a suggestion, there are games that need the set amount. For example, a two player 

game, like Stratego, requires two players. The strategy that each player takes can be affected by the 

number of players playing as an increase of players leads to an increase in difficulty when trying to 

assess and predict the moves of its opponent/s. For example, in Monopoly, a favoured strategy used by 

experienced players is to buy as many properties as soon as possible however, an increase in players 

decreases the chances of buying and the property distribution. Therefore, another strategy might be 

more appropriate in order to generate a better payoff. 

For example, The Hotelling game, requires different strategy as the number of players increase. The 

concept is that the players simultaneously decide where their ice cream van is placed. Customers, are 

randomly placed, would go to the closest van. The winner would be the van that attracts the most 

customers. Now, in a two player game, the nash equilibrium is both players placing the van in the 
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middle, as you are guaranteed at least half of the customers. However, an increase in players makes 

things more difficult, particularly when there are an odd number of players as the distribution is not 

equal [21]. With the constraint of limited turns in the project’s version of Monopoly, deciding when the 

best time to buy and sell will be crucial. Combined with the increase in players complicates things 

further as it leads to an increase in different strategies deployed by the opponents. Trying to align a 

strategy with several others so it still provides a better payoff can be difficult. 

Simultaneous and Sequential Games 

To classify a game as simultaneous each of the players adopt a strategy without any information or 

knowledge of the other players’ strategy [22]. The decisions made by each of the players are 

simultaneous, meaning that the players decide on their move at the same time [23]. A simple example 

would be Rock, Paper, Scissors. Both players decide and display their move at the exact same moment. 

Each of their strategies are unknown to their opponent. It is also an example of a complete information 

game, whereby each player knows exactly how to win [23]. We know that rock beats scissors, scissors 

beats paper and paper beats rock. Simultaneous games are usually represented by payoff matrix, like 

below. 

Figure 2.3: Rock,Paper, Scissors Payoff Matrix 

A sequential game requires players to make a series of moves which affects the successive possibilities 

of future moves [24]. As the players take it in turn, it provides the successive player information of the 

payoff of the previous player’s moves, which can then be used to strategically plan future moves. 

Monopoly is a sequential game as players take it in turn to make any decisions and the successive player 

can capitalise on this. Sequential games are usually represented by decision trees. 

Cooperative or Non-Cooperative 

A cooperative game allows binding agreements that are followed through by the players, who benefit 

through cooperation [25]. It is essential that any agreements formed are enforced, otherwise it would 

not be classed as a cooperative game. Also, there needs to be a way where the payoff is distributed 

amongst the involved players accordingly [18]. It does necessarily have to be between only two players. 

For example, in Monopoly a trade between two players can involve the contribution of the other players. 

The game should consist of three players or more, otherwise creating a binding agreement would be 

unlikley because strategically speaking, an agreement could assist the opponent in winning. Monopoly 
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would be classed as a cooperative game because the main aspect of the game is to create deals with 

opponents, so binding agreements, in order to win the game. This element of dealing can have great 

impact on who wins because the distribution of payoff to all the players must be, particularly when 

a‘good’ payoff distribution provides an even better payoff for your opponent. 

A non-cooperative game does not allow players to make binding agreements [25]. There could be a 

number of reasons why forming contracts and coalitions would not be possible. For example, the players 

could be unable to communicate with each other or players are simply not allowed to form agreements.  

Games such as Chess would be non-cooperative, as it is a two player game so there would be no strategic 

sense to cooperate with opponents. 

Symmetric and Asymmetric Games 

Symmetric games are those that are not influenced by the identity of the player. This means that 

regardless of the identity of the player the payoff of the strategy will always remain the same.  In 

essence, this means that a player making the same moves as another should get the same payoff [26]. 

To determine if a game is symmetric it should be able to represent a player’s payoff as a transpose of 

the other player’s payoff, like in the game Battle of the Sexes and Monopoly [26]. Alternatively, in an 

asymmetric game there is usually no identical strategy sets for both players however, this is not 

always the case [27]. 

 

 
 

 
 
 

                               Figure 2.4 (a) Symmetric Game                     Figure 2.4(b) Asymmetric Game 

 

2.2.4 Game Representations 

Game modeling requires elements required to be known and in what detail they need to be represented. 

There are many elements that create a game, mentioned in Section 2.2.1. Cooperative games are usually 

represented in the Characteristic Function Form, otherwise known as Coalition Form, whereas non 

cooperative games are represented in extensive and normal form [28]. 
Normal Form 

Examples of normal form are displayed in figure 2.4. It describes the game as a matrix which includes 

information such as the players, possible moves and the payoff for each move. The payoff is determined 

by a function that associates a value based on all possible combinations of moves that can be made. 

This type of representation is typically used for simultaneous games, mentioned in Chapter 2 [29]. 
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Extensive Form 

Extensive form representation includes more information than normal form as the order of moves, the 

information available and the available actions to the players at each stage is displayed [30]. 

Consequently, extensive form is used for sequential games, mentioned in Chapter 2, as it illustrates 

individual moves made after each succession. Its representation is a game tree where each node on the 

tree represents a state and each branch is a possible action.  It is read from the top, hence why the first 

node represents the start of the game and the leaf nodes include the payoff of that particular combination 

of moves. Due to its structure one can calculate the optimal combination of moves or strategies by using 

backward induction. You work up the tree calculating rational moves until you reach the top of the tree. 

 
 
 
 

 

 

Figure 2.5: Game Tree 
 

Coalitional Form 
As mentioned above, most cooperative games are usually represented in the Coalitional Form. 

Cooperative games, mentioned in Chapter 2, include binding contracts between players. These 

contracts do not necessarily have restrictions and the possibility that they consist of ongoing payments 

or transfers throughout the game, which is called transferable utility. The inclusion of these contracts 

added with the objective to win comes this idea of different strategies. Many of these strategies would 

include players forming alliances when they share similar short term objectives. Whenever a game 

possesses transferable utility, the allocation of the payoffs in a coalition are not given separately but the 

coalitional form determines an overall payoff for each coalition. It includes a characteristic function c: 

2n → ℝ which describes the payoff gained by forming a coalition. 

Solved Games  

For a game to be classed as a solved game, if both players are playing perfectly, the final payoff can be 

based upon the move that the player decides and the current state. The final payoff would be either a 

win, lose or draw. This concept is typically used for games that are deterministic and perfect 

information. Therefore, there is no element of luck or randomness and each player has full information. 

Playing ‘perfectly’, is when a player enforces an optimal strategy, gaining the maximum payoff 

possible. Examples of such solved games are Connect Four and Checkers. 
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Skilled Games 

On the other hand, skilled games can never really be solved, due to the fact that they tend to be 

stochastic, and imperfect information games, mentioned in Chapter 2. Examples of such games are: 

Poker, Blackjack and Risk. 
2.2.5 Game Strategies 

The options that are open to a player when deciding their move, where the outcome of that option is 

dependent on their actions and their competitors, is what defines a player’s strategy. Their strategy will 

influence and determine any action that the player must make at any stage of a game. Gaming Theory 

centralizes itself around two main types of strategies: pure and mixed. 
Pure Strategy 

Pure strategy is where a specific action is selected for certainty, at any decision point, without any 

randomization [31]. It provides a complete set of actions to take for every possible situation. Therefore, 

because pure strategy means that a set strategy is played for the entirety of the game it can be classified 

as deterministic [31]. The downsides to this type of strategy is that the opponent can begin to predict 

the player’s move and react with an action that will grant a better payoff. For example, in Rock-Paper-

Scissors the pure strategy would be to choose the same single move each time, say rock, then the 

opponent will be always able to predict this and retaliate by making a move that will provide a better 

payoff, in this case paper [32]. 

Mixed Strategy 

Mixed strategy is where each choice in the strategy set is given a probability, where each option 

available is set the probability of being chosen. Therefore unlike pure strategy there is randomization 

[33][34]. As detailed in Chapter 2, it suggests that applying a mixed strategy is used for stochastic 

games [31]. With each choice given a positive probability, all of which summate to one, they enable to 

determine the player’s move. Essentially, when a player is implementing a mixed strategy they are 

incorporating several pure strategies into the game [32]. This can be illustrated in the children game, 

Matching Pennies [35]. The choice set consists of two options, heads (H) or tails (T). If player 1 wins 

a pound from player 2 if both their choices match but would lose a pound to player 2 if they do not 

match [34]. This information is represented below: 
 

 
 

 

 

 

Figure 2.6: Representation of Matching Pennies 
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2.3 Artificial Intelligence Techniques 

2.3.1 Heuristic Search 

The term heuristic, in artificial intelligence, has quite a specialized technical meaning [36]. Generally 

speaking, it is given to advice that is effective in most cases but not fully reliable for all cases.  From 

an algorithmic perspective, heuristics would typically be used when the top priority is speed, and a 

satisfactory solution is acceptable and required. Consequently, completeness is sacrificed but efficiency 

is increased as the amount of computation is reduced [39].  The process is a mapping from a specific 

state to some value, through heuristic evaluation functions, which are analysed to find the best chance 

of success [36].  For example, in a game tree, the heuristic function would calculate a value for each 

branch level which is used to rank each branch and determine the best route to follow [37]. This value 

should represent the true utility of a state, without the need of doing a full search of all possible outcomes 

[38].  For Monopoly, the tree search space is very big and a full search of all possible outcomes would 

take a long time to compute, so a heuristic search would be an effective way to calculate the strategy 

that the AI should take. 

An example of heuristic search would be the Travelling Salesman Problem. It performs a depth first 

search, creating a possible solution and verifies whether it is an actual possible solution [39].  The 

heuristic search takes the information provided about the given problem and shows which state is closer 

to the goal than another [40]. Using the heuristics calculated by the heuristic evaluation function, to 

compare and evaluate which move would provide the best payoff, helping to decide the best strategy. 

The heuristic can be designed so that it takes into consideration a game’s rules and features, which can 

be organised into categories. For example, in Monopoly the rent of properties, monetary value, and 

opponents’ need to be considered. In order to get an effective result, more information needs to be 

provided as it allows us to make legal moves within the limits of the game. 

However, state evaluation heuristics requires even less computation, to calculate a heuristic, than 

heuristic search as it only takes the information of a current. It is important to note that state search can 

still be challenging, particularly when calculating a value for each separate component in the game. Due 

to this fact, the weighted linear function was introduced, a much simpler heuristic function: 

W1F1 + W2F2 + W3F3 + W4F4 +...+WnFn   

Where Fn denotes each component in the current state and Wn a weight parameter [38]. 

2.3.2 MiniMax 

Minimax is a decision rule in determining the best move for the current player when the game is 

classified as perfect information, sequential, zero-sum or deterministic. Its algorithm is recursive and 

uses a depth first search strategy. Particularly, in a perfect information game, like Chess, it is considered 

that the player should never depart from a MiniMax strategy [41]. For MiniMax, its main focus is to 
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minimise the possible loss for the worst case scenario, so in turn maxmises on the minimum loss. When 

choosing a MiniMax strategy, the assumption made is that all players are rational [41]. It is worth noting 

that a MiniMax strategy is typically prescribed against opponents who also use a MiniMax strategy [41]. 

For a zero sum game, MiniMax is able to minimise the opponent’s maximum payoff. Consequently, due 

to the characteristic of zero sum games, that a player’s gain is due to the loss of an opponent, it allows 

MiniMax to monopolize on this. 

MiniMax was originally created for zero sum games that required two players so that it could cover all 

the possible moves in a game, but was then utilized for n-player games, mentioned in Chapter 2. Its 

visual representation usually takes the form of a game tree, where each node is given an evaluation 

score. During the process of deciding the best moves for the player, the path with the highest payoff is 

chosen and there is an attempt to look ahead and predict what move the opponent would make, with the 

assumption that the opponent is playing optimally. All possible paths are looked at, starting from the 

root node and working downwards. 

 

 

 

 

 

 
             

   Figure 2.7: Tic – Tac – Toe Game Tree 

The heuristic element of minimax occurs when each state is given its value or ranking. This ranking is 

provided using the heuristic function. Overall, it would produce a scored state board which is used to 

find the optimal route. 

 

 

 

 

 

 

  

 
 
 

 

 

Figure 2.8: Minimax Pseudo code 
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2.3.3 MaxMin 

MaxMin is used when trying to maximise the minimum gain, perfect for non-zero sum games as it 

enables to maxmise the player’s minimum payoff; a variant to the MiniMax algorithm. It is useful 

when the opponent is irrational and not able to play optimally [42]. 

2.3.4 Alpha Pruning 

Both MiniMax and MaxMin algorithms use a depth first search technique to search all possible moves 

in a game, via the game tree. However, this can be both costly and long if the game tree is big. In fact, 

it can be exponentially expensive O(xn), where n denotes the maximum depth of the tree and x denotes 

the worst possible branch value. Unlike MiniMax, Alpha pruning eliminates any paths that are worse 

ranked than any evaluated previously [43]. Subsequently, the algorithm requires two more values to 

be stored. Alpha to store for the maximum value for the maximum path and beta to store for the 

minimum value for the minimum path. Essentially, this means that it removes or ignores (prunes) 

parts of the game tree that have no real impact on the goal. It works its way down the tree storing the 

maximum value, alpha, for each node and then compares this with the branch below. If the next 

branch is higher alpha is updated and the next branch is investigated, otherwise the next branch is 

pruned. The MiniMax element is when the alpha and beta values are passed down, as they are done 

with each recursive call of MiniMax. This same process is done for the opposition except this time 

instead of working with alpha you would be investigating the minimum path, so you would focus on 

beta. This adaptation to the MiniMax algorithm means the time complexity can be minimised to 

O(Xn/2) [38]. The heuristic element occurs at the leaf nodes where the heuristic state evaluation 

function is applied. 

                                   
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.9: Alpha- Beta Pseudo code 
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2.3.5 Machine Learning 

Machine learning is a complete contrast to that of the very logic based AI techniques mentioned so 

far. Its main idea is to learn from experience rather than be a hard coded AI system that needs to be 

told how to react in all circumstances.  Machine learning is not a method that has been used in 

gaming [44].  Machine Learning can be classified into three categories: supervised learning, 

reinforcement learning and unsupervised learning. All three differentiate based upon how the 

algorithm is designed to learn. 
 

Supervised learning, is a set of examples, called a training set, where given an input the recommended 

output is provided. It provides the AI with examples of how to react appropriately and a foundation on 

which it can base its actions on.  This set will be amended to handle any situation by producing a 

function that provides the appropriate output for the given input. Examples of this are support vector 

machines and decision tree learning. 

 

Unsupervised learning, has three sections within itself: k - means clustering, probabilistic clustering 

and hierarchical clustering. It is considered to be the opposite to supervised learning, in the sense that 

no training set given. This means that the agent does not have anything to base its actions against. 

Instead, it attempts to find similarities in the inputs provided and categorises those that are similar 

together [45]. 

 

Reinforcement learning, is a cross between supervised and unsupervised learning. The algorithm knows 

an incorrect output, like in supervised learning, but is not aware in how to fix it, like in unsupervised 

learning. It is forced to investigate to try and figure out how to correct an incorrect answer [45]. It is 

not provided with a training set of examples on which to base its actions against, but merely told when 

an output is incorrect.  There is no thorough guide on exactly what moves should be taken like in 

supervised learning. 

 

For this project, a machine learning approach will not be taken, but a reinforcement approach would be 

the most suitable if it was. Due to the fact that we are not fully sure on what strategy would be the best 

so we cannot provide the all answers to all situations, like in supervised learning. Unsupervised learning 

would not be suitable too because patterns in input is not the focus. 
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Chapter Three 

Monopoly 

3.1 Introduction 

There were several reasons why Monopoly was chosen. The most attractive was the objective of the 

game, which is to become the wealthiest player through buying, selling and renting properties. 

Determining how each player would interact in these situations generated intrigue as each player would 

possess a different strategy so would buy and sell at varied prices. This interaction between the players 

makes it worth studying and testing what would be considered the best strategy. 

There are several versions of this game, with the main difference being on how a winner is declared. 

The original version ends the game when every player except one has declared bankruptcy, where the 

last player is the winner. Other versions either limit the buying and selling element, like Monopoly 

Junior, or add a time limit and declare whomever is the wealthiest at that point as the winner.  To make 

this project as successful as possible there will be a round constraint, which mean that each player will 

have the same set number of turns before the game ends.  Then player with the highest total, by adding 

up bank balances and rental property values, is the winner. 

 

 

 

 

 

          Figure 3.1 (a) game of Monopoly               Figure 3.1 (b) an example of a title deed 

The rules and setup described below is for the original version of Monopoly, this project will be 

centered around this but there will be a few variations that are mentioned in section 3.4. 

3.2 Setup 

• Two to eight players 

• Each player is given £1500 

• Each player chooses a token to represent themselves on the board 

• Chance and Community Chess cards are placed in the centre 

• Title Deeds are given to the bank 

• One of the players will also be the banker 
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3.3 Rules 

1. Starting with the banker, each player takes it turns to roll the dice. The player with the highest roll 

goes first, moving their token by the number of spaces shown on the dice. The timer would be set once 

the banker does his first roll. 

2. If a token land on a Chance or Community Chest space they must pick the appropriate card and 

follow the rules written on the card. 

3. Once their token manages to go across the board and pass “GO” they receive £200 from the bank are 

allowed to start buying and selling real estate. 

4. Whenever a token lands on unowned property they have the chance to buy that property from the 

bank at its printed price, if they choose to accept they would then receive the Title Deed card from the 

bank which they would place upwards in front of them. 

5. If they choose to decline the banker sells it at auction to the highest bidder. The buyer is to pay the 

bank the amount of the bid and receives the Title Deed card from the bank.  Any player, including the 

player who initially declined to buy at the printed price, is open to bid at auction. Bidding may start at 

any price. 

6. If a token lands on a property that is owned by a player, they must pay the amount declared on the 

Title Deed card. However, if the property is mortgaged, no rent is to be collected. 

7. If a player lands on “Go to Jail”, the player must immediately go to jail without receiving the £200 

for passing “Go”. They can only leave if the pay £50 to the bank or have “Get out of Jail” card. 

Regardless if a player is in jail, they can still buy and sell property, buy and sell houses and hotels as 

well as collect rent. 

8. A player can only start buying houses and hotels once they own all properties in a colour set. The 

price of buying a house or hotel will vary on the property, these prices are listed on the Title Deed card. 

A player can only buy hotels once they have bought the all houses for that property, if they decide to 

buy a hotel for that property they give back the four houses and keep just the hotel. 

9. Players can trade among themselves as long as both players agree to the deal. 

10. The game continues until all but one player declares bankruptcy. 

3.4 Project Variation 

This version of Monopoly will keep the strategic aspect of the game but will exclude less important or 

trivial factors out. 

• Purely, to simplify the game, the element of mortgaging and the community chest and chance 

cards will be removed from this implementation of the game. 
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• Players can buy property within their first roll. 

• No building allowed 

• There is no £200 for passing ‘GO’ or no ‘Jail’ space on the board. 

• Also, instead of playing until all but one player has gone bankrupt the game continues up until 

it has completed the allocated number of rounds or if one player goes bankrupt.   

3.5 Classification 

Knowing the types of games, as mentioned in Chapter 2, Monopoly (and this projects’ version) would 

be classified as: 

Cooperative: The main essence of the game is to generate deals by buying and selling properties which 

means that contracts have to be made and enforced. 

Symmetric: Identity is irrelevant when it comes down to the payoff of strategies 

Sequential: Moves have to be taken sequentially, each player must wait their turn � 

Stochastic: There is an element of chance, that being the dice 

Perfect: All information is displayed, there is no information hidden or concealed 

N- Player: Requires two or more players 

Zero-Sum: The win of a player is at the expense of another 

3.6 Strategies in Monopoly 

There are several well-known strategies when playing Monopoly. There are a few mentioned below: 

• Buy everything that you land on, adopted by Bjørn Halvard Knappskog (2009 World 

Champion). 

• Focus on the smaller valued properties, in order to generate cash flow. 

• Do not buy railways or utilities. 

• Buy any property that is seven squares from any of your opponent. 



 19 

• Achieve a deal where both players win but your payoff is greater. 

• Buy orange and red properties as they have the highest probability of being landed on 

Of course, these strategies are adopted for the full implementation of the game and so will have to be 

adapted for the version of Monopoly that will be implemented. There are strategies that contradict those 

mentioned above. 

3.7 Approach 

There are many factors that need to be considered, such as when would be the best time to buy and sell, 

how much properties should be bought and sold for, the issue of breaking even and making a profit 

before the number of turns has been achieved etc. The game will be broken into three major areas: 

buying, trading and auctioning. Each area will be investigated in order to find the best implementation. 

The main part of this project occurs through the implementation of the AI. Different strategies require 

different parameters for the heuristic evaluation function. The opposition needs to be considered as the 

price of a property may vary depending on who is buying it. In order to generate a better payoff a player 

would not only consider their own postilion but also compare themselves to the other players in the 

game.   

3.8 Chosen Language 

The decision on which language would be used to implement this project is very crucial. Due to the 

finer details that could cause issues and the complexity of the game itself I wanted to relieve the pressure 

by choosing a language that was of higher level than languages such as C/C++. This is because it 

requires the programmer to be much more concise and pedantic, which is an added unnecessary 

problem. For example, memory has to be managed within the code which makes it more prone to bugs 

and errors. As Monopoly can be considered as a long game that has many states the game tree would be 

very large. Thus, automatic memory management is essential, influencing the decision to use Python, 

an object orientated language. Also, through personal experience, Python is a lot easier to express ideas. 

 

3.9 Ethical, Social, Legal and Professional Issues 

The testing phase had no inclusion of human players, all included the use of the AI players. 

Therefore, there was no need for any consent, or need to respect anonymity, confidentiality or privacy. 

There has been no use of any external participants for this project or personal data used. Therefore, 

there have been no social and ethical issues in the project. 
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It was made a high priority that the referencing system was enforced throughout the project. Any 

external resources mentioned have been referenced accordingly and no information was plagiarised 

from the internet. The support and guidance that was received from Dr Brandon Bennett in the creation 

of code used throughout the project was mentioned in Chapter 5. 

This project demonstrated professionalism throughout. It was clearly planned, realistic in its design and 

targets and was properly referenced. 

Of course, if the project was to be developed further and there was an inclusion of human players then 

the above issues would be much more detailed. 
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Chapter Four 

Design 

 

4.1 Introduction 

This chapter will describe the design of the game and the AI using the information and knowledge 

gathered in Chapter 2. In order to meet the objectives for this project, the AI techniques that will be 

used were explored in the background research. 

Creating a two player game would mean that there is the possibility of little interaction, particularly if 

the AI adopts a ‘no buying’ strategy. However, this strategy would be interesting to test therefore, it has 

been decided that the game will be tested with a minimum of three players. 

4.2 Game Setup 

The game board will be a class in Python, which includes an array that will hold information such as 

the property name, property value, set and rent value. This will remain the same throughout, displaying 

itself as a table and will look the same for all players. 

If a player owns a property, it would simply be represented by their name by that space on the table. If 

a player lands on an opponent’s property their name can be found under the “Occupants” column. 

In terms of cash, each player will be able to see the bank balance of each player as it is shown underneath 

the table, along with the number of properties each player owns, the total rental value of their properties 

and their heuristics. As each player takes their turn the display should output the player taking its turn, 

the round they are on, what they are doing, what the dice rolls, what position they move to, what their 

options are, the heuristic evaluation from the option and finally, the decision they make. For each game, 

the players are shuffled to decide the order of turns. 

4.3 AI Design 

Based upon background research the AI technique would use the heuristic state evaluation.  The AI 

must be clear on which factor of the game is top priority, whether that be buying properties or retaining 

cash balance. Of course the decisions made will be reflected in the strategy of the AI player and in the 

heuristic function parameters. By creating a detailed heuristic evaluation function, it should be able to 

instruct the AI player to select the next best move.  Every decision made is based upon the heuristic, 

and this heuristic must factor in the current state and then any changes incurred. 
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A heuristic is sufficient enough to evaluate the value of game states and to calculate the benefit of any 

buying or selling actions.  This approach will help determine the possible moves for themselves while 

factoring in their opponents.  The function must consider the key factors, otherwise the AI could be 

making short term gains and long term failures. The function will evaluate each state, taking into 

consideration property value, cash remaining, opposition and margins. 

The Three Major Aspects of the Game: Deal, Buy and Auction Analysis 

A player can only do any of these options when it is their turn. 

AI Auction 

All players are allowed to participate in the auction as long as they can provide the bid total if they win. 

Of course, this question of buying a property is only relevant if the property is unowned or if making a 

deal with another player. The project will be implementing the English auction. When a property goes 

for auction any players that want the property continuously provide bids, in ascending order, until there 

is only one player that is willing to pay the totaled bid amount. It will increment in 1’s and the AI player 

will continue to bid based upon the heuristic generated. 

A player would want to bid high enough that they gain the property but low enough that there is no 

unnecessary expenditure, which is where margins come into play. When trying to find the optimal 

strategy overall, for each key area of the game a different tactic may be required. Strategies usually 

depend on the strategy of its opponents. A technique to evaluate a strategy is using deviation logic. 

AI Deal 

A player can only trade a property that is in their possession. All trades must be beneficial to all parties 

involved, but the payoff does not need to be equivalent.  At the beginning of each turn a player will 

have the opportunity to offer properties for sale which the other players can then buy.  The trading aspect 

of Monopoly is instrumental in determining the winner and is a large aspect of a player’s strategy. The 

AI would come up with a deal by calculating how much they would gain by a given transaction by 

comparing the value of the game state before and after the transaction is made. Trading too early can 

be risky because to assess a trade that will provide a maximum payoff, properties must be distributed 

among the players. This will then limit unnecessary expenditure. Also, when creating a trade, it is 

sensible to look at the opponent’s assets and the repercussions of the trade, for both players. Initially, 

what may look like a good deal may be an even better deal for the opponent. 

The trading strategy will depend on a few factors such as:  player’s bank balance in comparison to their 

opponents, the properties of their opponents and player’s current position. The player’s stated goal is to 
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maximise their payoff whilst minimizing their opponents. The added bonus of gaining property sets 

means that selling will be done carefully as losing a property that may need to gain a full set could be 

detrimental to winning. 

AI Buy 

The buying aspect of the AI player is embedded within the process of dealing and auctioning. As with 

dealing and auctioning the decision to buy a property will be based upon the rental value of the property, 

the player’s bank balance, the opposition’s bank balance and their properties. With the added incentive 

of rent prices doubling when gaining property sets, the last factor will have a major effect. Throughout 

the game, margins will be key, because they represent how much the player wants to benefit from any 

type of transaction. Strategically speaking, a player may not need to buy a property but it may be 

beneficial to do so if their opponent needs it.   
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Chapter Five 

Implementation 

Brandon Bennett helped massively with the implementation of the Monopoly and the AI, by providing 

the structure required to go onto the testing phase. 

5.1 Displaying the State 

The game board is simply a collection of strings that displays as a table, all done in display_state, 

displaying the information mentioned in Chapter 4. It gathers most of the information from the Board 

class which contains all but the property owners and occupants. The property owner and occupants’ 

information is appended into the table when necessary. There is a Space class which deals with the 

adding and removing of occupants as they move onto and off each space. The owners of the properties 

will be added to the table through this class too. All personal player information can be found in the 

Player class. 

5.2 Heuristic State Evaluation Function 

The heuristic state evaluation function is designed so that it uses the information from its current state 

and player’s strategy to evaluate the value of a specific state, and then picks the move that results with 

the highest heuristic.  When a player is faced to make an action, say to buy a property, the heuristic 

function will take the current state and add in the effect of buying that property, returning a heuristic 

evaluation. The player will then decide on its move based upon this value. In essence, the function is 

set up so that it looks into the future. Everything required for the calculation of the heuristic are stored 

within the state, so it is easier to calculate new states and their heuristics, all that needs to be done is 

gathering the player’s personal information. This function will be used numerous times for different 

occasions such as helping to calculate the buying, dealing and auctioning heuristic values. 

Six factors that make up the heuristic function (Strategy class). Each factor can be changed to represent 

different strategies. The six factors are: 

Rent multiplier (rm): In general, it is a reflection on how often a player would buy. It takes into account 

the rental value, property value and breaking even. For example, if a player’s rental multiplier is set to 

5 and a property costs £100 where the rent is £20, the player will only buy if they can get a return in 5 

landings. If the rental multiplier is set to 1 then the player is highly unlikely to buy any property whereas 

if it is set to 8 they are much more likely. 

Opponent’s money multiplier (opmm): A negative multiplier of the total of opponent’s money. A low 

value shows the player cares little about its opponents’ bank balance. 
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Opponent’s rental multiplier (oprm): A negative multiplier of the total of opponents' rent. Like above, 

a low value shows the player cares little about its opponents’ properties. 

Buy margin (bm): It represents a gain in heuristic required to buy a property. Strategically, speaking the 

player would want a low margin. 

Sell margin (sm): It represents a gain in heuristic required to sell a property. Strategically, speaking the 

player would want a high margin. For example, if the margin is low, then a player is more likely to sell 

and gain a slight benefit as they would rather have the money. Both sm and bm are all about how 

beneficial the player wants the deal to be. 

Reserve (reserve): Is the amount that the player’s bank account must have at all times. 

Reserve Penalty (reserve_penalty): It negates the amount from the player, if the player goes below its 

reserve value. 

Jeopardy Aversion (ja): Is a negative multiplier of the jeopardy.  Jeopardy is calculated as the fraction 

of spaces owned by other players; whose rent is more than the player’s money. It is all about how 

dangerous a space is or could be for a player. 

Thus, the following class was created, where the heuristic function calculates the heuristic using the 

rules above, the state and the player:    

 

 

 

 

 
 
 
 
 
 
 

Figure 5.1: Heuristic Function 

5.3 The Three Major Aspects: Buying, Dealing and Auction 

 Buying, dealing, auctioning, all use the information that have been stored within the sates. 

Auction 

The participation in an auction and the bids involved, requires the combination of several functions. 

Majority of the work occurs in the auction function where it takes state, space, bid and players as 

class Strategy:    
      def __init__(self, rm, opmm, oprm, bm, sm, reserve, reserve_penalty, ja): 
          self.rent_mult = rm                 
          self.opponent_money_mult = opmm     
          self.opponent_rent_mult = oprm      
          self.buy_margin = bm               
          self.sell_margin = sm              
          self.reserve = reserve              
          self.reserve_penalty = reserve_penalty 
          self.jeopardy_aversion = ja         
           
       def heuristic(self, state, player): 
          value = player.money(state) 
          value += player.total_rent(state) * player.strategy.rent_mult 
          value -= sum( [opponent.money(state) for opponent in player.opponents] ) * 
self.opponent_money_mult 
          value -= sum( [opponent.total_rent(state) for opponent in player.opponents] ) * 
self.opponent_rent_mult 
           
          value -= player.jeopardy(state) * self.jeopardy_aversion 
           
          if (player.money(state) < self.reserve): 
              value -= self.reserve_penalty 
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parameters. It first calculates what the new state would be if the property is bought (buy_result_state) 

and the heuristic (buy_value) of buying at that bid, taking into account the strategy of the player. Also, 

the function considers its opponent’s buying that property too (op_buy_values) and taking the heuristic 

gain for each of the players’ (op_buy_states).  Once it has gathered this information it will discover the 

minimum of these values (worst_op_buy_value) and will only continue with the auction as long as the 

player’s heuristic (buy_value) is greater than its opponents. The auction function will be called within 

the if loop as each turn within the loop increments the property value by 1 the heuristic function will 

need to calculate how the new property value affects the player. It repeats all the calculations mentioned 

above, constantly checking whether an increment of 1 is still a heuristic gain for the player and worth 

bidding for. If an action is followed through then the heuristic gain will be added to the players existing 

heuristic, the	gainFromStateChange will calculate the heuristic gain from the current state to the new 

state. 

Buying 

When a player rolls the dice and moves, it will get first choice on whether it wants to buy the property 

if it is unowned. Deciding whether to buy or not is calculated within the Progress function. It will 

calculate the new state including buying the property (buy_result_state) and its heuristic (buy_value), 

willing to proceed with the purchase as long as the heuristic is positive. It will also check the effect of 

an opposition buying the property and the minimum of the possible heuristics (worst_op_buy_value). 

It will decline to buy if the player’s buy_value is less than the worst_op_buy_value	too. It will buy if it 

feels that it is more damaging to let another player buy the property even if they do not need it. 

Dealing 

The function, highest_offer_giving_margin_gain, returns the highest offer that a buyer of a property 

makes to its owner and still make a heuristic gain for at least the given margin, within a low to high 

range. If a 0 payment does not make the gain margin, gm, then None is returned. If the total money, T, 

available makes the margin this will be returned and if neither of these two hold then the range is shrunk 

successively by evaluating the gain at the midpoint, done through the function, 

highest_offer_in_range_meeting_target. The heuristics will then be changed depending on the 

outcome of the trade. 

 
 

 

 

 



 27 

Chapter 6 

AI Player Evolution 
 

6.1 Introduction 

The discovery of the optimal strategy was a methodical process. It required starting off very simple and 

leaving the AI nothing to consider to it slowly considering it more factors and aspects of the game. This 

chapter will discuss the process that took place when creating the optimal strategy for the AI player. 

Each of the different versions of the AI were tested and its results are shown in Chapter 7. 

6.2 Heuristics 

There will be a few heuristic functions, all of which have slight variation from each other, that are 

centred around a different top priority whilst still considering all aspects of the game. What that means 

is that there will be one heuristic that regards cash value of higher importance than buying and selling 

properties, one will regard buying properties of higher importance than monetary value. The heuristic 

functions will adapt and build upon each other. Initially they will be quite simple, but effective in the 

sense that they will capture the key essences of the game, whilst only focusing on a few elements. 

Slowly, this will change as the heuristic functions will be built upon and developed further. They will 

then be compared to each other in order to find the best heuristic. Majority of this comparison will occur 

during the testing stage of this project. The different heuristic functions and the different importance 

factors inherited by the AI will be tested against each other. This can then be compared against each of 

the players to help determine which strategy is considered the best. It is important to note that a player’s 

strategy may only play well due to its opponents’ strategy and does not suggest that it is the optimal 

strategy. 

The testing process should generate a more balanced and well-rounded player. It will use two extreme 

strategies and attempt to find a balance that performs more consistently. There will be a methodical 

approach in trying to discover the optimal strategy. Certain strategies may initially perform well on their 

own but paired with others it may not. Therefore, the strategies will be tested against different strategy 

types to ensure the optimal is found. 

6.3 AI Version 1.0 

The initial approach was to simplify the AI as much as possible. This was supposed to imitate a human 

player, as the easiest way for a player to decide it to think irrationally. The simplest way to do this is by 

the AI player making moves randomly, known as random decision making, as it would not be 

considering any factors or aspects of the game. This process requires no heuristics as the measurement 

of different game states would be irrelevant and have no impact on the AI player’s decisions. Although, 

this strategy method provided no reliability or assurance that the AI player would win, the same was 



 28 

said for defeat too. Also, with this randomised approach it does make the AI player unpredictable which 

is good in the sense that its opponent cannot plan or strategically protect themselves. However, as a 

strategy it did not project the results required for it to be the optimal strategy, particularly when its 

opponents are rational. 

6.4 AI Version 2.0 

The advanced AI player is focused and centred around heuristics. Its decision is calculated and aimed 

to achieve its top priority. The aim of this project is to find the optimal winning strategy based on 

heuristics to be chosen for the AI player to adopt. Subsequently, the heuristic functions created evolved 

from the previous ones, taking in the things that worked and adapting the values that did not. The testing 

process should illustrate the AI learning from strategies. There will be four AI players playing against 

each other and the most winning heuristic parameter value will progress to the next set of testing. The 

AI, overall, will adopt the best heuristic when tested. 

The heuristic functions could be heavily focused on certain aspects like property buying or purely 

selecting the moves that generated the highest initial payoff, also known as greedy decision making. In 

terms of greedy decision making, when applied in a game like Monopoly, would not consider its 

opponent or property sets and when it came to selling it would sell for the highest price possible and 

buy for the lowest. This method focuses on one aspect at a time whether that be buying for as little as 

possible or selling for as a high as possible, which is done by changing the multiplier. 

6.5 Strategies Created 

By looking at the two versions discussed above, that are focused on greedy decision making and random 

decision making, several basic strategies have been created, displayed in the three boundaries below. 

How well a strategy performs will be based on the percentage of wins within a several games. This will 

be the benchmark that will be used to assess how well a strategy plays. To help provide structure to the 

process there have been three set of parameters that have been formed, named Greedy, Tight and 

Irrational. These will be used as starting points. These three thresholds can be considered as boundaries 

between the strategies, and the optimal strategy will evolve from these. 

Strategy (rm,	opmm,		oprm,		bm,			sm,	reserve	,		reserve_penalty,		ja) 

Tight = Strategy ( 0,  0.7,  2,   10,   5,  500,  1000,   10000 ) 

Greedy = Strategy ( 10,  0.5,  2,   50,  50,    0,  1200,   20000 ) 

Irrational = Strategy (0, 0, 0, 0, 0, 0, 0) 

Round 1 

Strategies 1,2,3: Test three thresholds against themselves and each other. 
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Round 2 

Strategies 4: Take the Greedy and Tight boundaries from round one and start to compare them. Taking 

the most winning boundary, slowly adapt its features, and the second most winning boundary. The aim 

is to find a balance between the two, looking at one parameter at a time. In this round it will be the rm 

value. Test the adapted boundary against the other to find the optimal rm value. 

Round 3 

Strategies 5: Taking the newly adapted boundary, search for the optimal value for opmm. This value 

will be take its place in the set of parameters. 

Round 4 

Strategies 6: Taking the newly adapted boundary, search for the optimal value for oprm. This value will 

be take its place in the set of parameters. 

Round 5 

Strategies 7: Taking the newly adapted boundary, search for the optimal value for bm. This value will 

be take its place in the set of parameters. 

Round 6 

Strategies 8: Taking the newly adapted boundary, search for the optimal value for sm. This value will 

be take its place in the set of parameters. 

Round 7 

Strategies 9: Taking the newly adapted boundary, search for the optimal value for reserve. This value 

will be take its place in the set of parameters. 

Round 8 

Strategies 11: Taking the newly adapted boundary, search for the optimal value for	respen. This value 

will be take its place in the set of parameters. 

Round 9 

Strategies 13: Taking the newly adapted boundary, search for the optimal value for jep	av. This value 

will be take its place in the set of parameters. 

 

Final Outcome: An optimal set of parameters 
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Chapter 7 

Testing and Evaluating 

7.1 Introduction 

The optimal strategy will be the strategy that wins the most and it is this strategy that will be adopted 

by the AI. Initially, the strategies will be tested against one other type of strategy. If no clear parameter 

value is found it will be tested against another type of strategy. Once the final optimal set of parameters 

is decided it will be tested against multiple strategies to ensure that it really is optimal. 

7.2 Testing 

When evaluating strategies, it is important to remember that it is assumed all participants are rational 

and aim to maximise their payoff within the rules of the game. Therefore, it does mean that the 

evaluation requires the analysis of the players and their strategic decisions which may have been 

influenced by the strategy of its opponents.  In order to find an optimal strategy, one must consider the 

moves of its opponents otherwise it becomes a standard decision analysis. It must be able to handle 

opponents who make moves randomly and opponents who have a more structured and well thought out 

strategy. Due to the random element of the dice, the results may vary and 100% win rate is highly 

unlikely. Each strategy was tested in 1000 games, where each game possessed a maximum of 40 rounds 

each. It was seen through testing that 40 rounds was the most suitable as it provided the most consistent 

results.   

NOTE: The following results display the worst cases that had been generated. Most tests were running 
in sets of 1000 games, where the lowest values found were displayed. 

Round 1 

Strategy 1 Details 

Player 1,2,3,4: Strategy (0, 0, 0, 0, 0, 0, 0,0)          (Irrational Player) 

Player 1,2,3,4:  Strategy ( 10,  0.5,  2,   50,  50,    0,  1200,   20000 )  (Greedy) 

Player 1,2,3,4: Strategy ( 0,  0.7,  2,   10,   5,  500,  1000,   10000 ) (Tight) 
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Strategy 2 Details 

Player 1,2: Strategy ( 0,  0.7,  2,   10,   5,  500,  1000,   10000 )   (Tight) 

Player 1,2: Strategy ( 10,  0.5,  2,   50,  50,    0,  1200,   20000 )  (Greedy) 

Player 3,4: Strategy (0, 0, 0, 0, 0, 0, 0)          (Irrational Player) 

 

 

 

 

 

 

Strategy 3 Details 

Players 1,2: Strategy ( 0,  0.7,  2,   10,   5,  500,  1000,   10000 )  (Tight) 

Player 3,4: Strategy ( 10,  0.5,  2,   50,  50,    0,  1200,   20000 )     (Greedy) 

Figure 7.1: Graph showing Tight, Greedy 
and Irrational % of wins when playing 
against each other. 

Figure 7.2: Graph showing results of Irrational 
Strategy players playing against Tight and 
Greedy players 
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Outcome: Due to the unpredictability of the irrational player round 2 will not be adapting from this set 

of parameters. Its poor performance against rational player, displayed in figure 7.2, shows that 

discovering an optimal solution from this would be time consuming. Therefore, round 2 of testing will 

be focused on adapting the Tight and Greedy thresholds.    

Round 2 

From this round onwards the Tight and Greedy thresholds will be tested against each other, whilst 

slowly tweaking the parameters to find a strategy that is optimal up to this point. 

Strategy 4 Details 

Looking at figure 7.3, the Greedy strategy outperformed the Tight one. However, the difference in the 

percentage of wins between the two player that adapted the Greedy strategy is quite big which suggest 

that there is an inconsistency. Therefore, the	rm parameter from the Greedy strategy will be the start of 

a process which will attempt to find the balance between the tight and greedy strategy in the hope that 

this will provide consistent optimal results. 

Optimal: Strategy (rm,	opmm,		oprm,		bm,			sm,	reserve	,		reserve_penalty,		ja) 

Players 1,2: Strategy ( rm,  0.5,  2,   50,  50,    0,  1200,   20000 )     (Greedy) 

Player 3,4: Strategy ( 0,  0.7,  2,   10,   5,  500,  1000,   10000 )  (Tight) 

 

 

 

Figure 7.3: Graph showing results of Tight and 
Greedy players playing against each other 
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Here we consider the different levels of greediness to see if that effects the number of wins. The number 

of wins varied as the level of greediness changed. As the rm value decreased the consistency of the 

Greedy player increased whilst still generating majority number of wins against the Tight player. The 

optimal rm value from the graph seem to be rm=3 as it is more consistent in terms or number of wins 

between the greedy players. 

Value for RM Taken Forward: 3 

Round 3 

Strategy 5 Details 

Optimal: Strategy (3, opmm,		oprm,		bm,			sm,	reserve	,		reserve_penalty,		ja) 

Players 1,2: Strategy ( 3,  oppm ,  2,   50,  50,    0,  1200,   20000 )     (Greedy) 

Player 3,4: Strategy ( 0,  0.7,  2,   10,   5,  500,  1000,   10000 )  (Tight) 

 

 

 

 

 

 

Figure 7.4: Graph showing results of Tight 
and Greedy players playing against each other 
with varied rm values 

Figure 7.5: Graph showing results of 
Tight and Greedy players playing against 
each other with varied oppm values 
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From this set of results, we can see that a player that cares little about its opponents, when rm=0) 

generates less wins than players who show some or full interest in its opponents’ monetary value.  When 

the oppm is set from 0.2 to 0.6 8 the value of wins for its opponents are similar but the win distribution 

between the greedy players is great. From the graph above the optimal oppm value is when it is set to 

1 because it allowed its opponents to win the least. 

Value for OPPM Taken Forward: 0 

Round 4 

Strategy 6 Details 

The oprm value is the same in both sets of parameters however, there may be an optimal value that is 

better than 2. Further tests on this parameter can be found in Appendix C. 

Optimal: Strategy (3, 1, oprm,		bm,			sm,	reserve	,		reserve_penalty,		ja) 

Players 1,2: Strategy ( 3, 0 ,  oprm,   50,  50,    0,  1200,   20000 )     (Greedy) 

Player 3,4: Strategy ( 0,  0.7,  2,   10,   5,  500,  1000,   10000 )  (Tight) 

 

 

 

  

 

 

The optimal oprm values are either 0/1/3 because they generate the most wins whilst keeping the 

minimal win percentage for its opponents even.  To decide which value would be taken forward the set 

of parameters will be tested against the greedy threshold as testing it against the tight threshold did not 

leave much difference between the two values. 

Players 1,2: Strategy ( 3, 1 ,  0/1/3,   50,  50,    0,  1200,   20000 )    

Figure 7.6: Graph showing results of Tight 
versus optimal players playing against each 
other with varied oprm values 
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Player 3,4: Strategy ( 10,  0.5,  2,   50,  50,    0,  1200,   20000 ) 

 

 

 

 

 

 

Value for OPRM Taken Forward: 1 

Round 5 

Strategy 7 Details 

Further tests on this parameter can be found in Appendix C. 

Optimal: Strategy (3, 0,  1, bm,			sm,	reserve	,		reserve_penalty,		ja) 

Players 1,2 : Strategy ( 3, 1 ,  0,   bm,  50,    0,  1200,   20000 )     (Greedy) 

Player 3,4 : Strategy ( 0,  0.7,  2,   10,   5,  500,  1000,   10000 )  (Tight) 

 

 

 

 

 

 

Figure 7.7: Graph showing results of 
Greedy players playing against Optimal 
players with varied oprm values 

Figure 7.8: Graph showing results of Tight 
players playing against Optimal players with 
varied bm values 
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Looking at the graph the optimal bm value is either 10 or 50 but due to the fact that bm =10 has a more 

even distribution of wins whilst still keeping the opponents number of wins to a minimum. 

Value for BM Taken Forward: 10 

Round 6 

Strategy 8 Details 

Further tests on this parameter can be found in Appendix C.   

Optimal: Strategy (3, 0,  1,  10, sm,	reserve	,		reserve_penalty,		ja) 

Players 1,2 : Strategy ( 3, 1 ,  0,   10,  sm,    0,  1200,   20000 )     (Greedy) 

Player 3,4 : Strategy ( 0,  0.7,  2,   10,   5,  500,  1000,   10000 )  (Tight) 

 

 

 

 

 

 

There is not much difference between the results form when sm=5 to sm=15. Therefore, the tests will 

be repeated against a tight threshold parameter. 

Players 1,2 : Strategy ( 3, 1 ,  0,   10,  5/10/15,    0,  1200,   20000 )    

Player 3,4 : Strategy ( 10,  0.5,  2,   50,  50,    0,  1200,   20000 ) 

 

Figure 7.9: Graph showing results of Tight players 
playing against Optimal players with varied sm 
values 
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The difference between the restful when sm = 10 and 15 is very small however, due to the fact that 

sm=10 is minutely more consistent in terms of opponent win distribution, sm=10 is the optimal value. 

Value for SM Taken Forward: 10 

Round 7 

Strategy 9 Details 

The reserve value cannot be higher than 500 as the players initially get £500 and if their reserve value 

is higher than they would be penalised before the game has even began. 

Optimal: Strategy (3, 0,  1,  10,   10,	reserve	,		reserve_penalty,		ja) 

Players 1,2 : Strategy ( 3, 1 ,  0,   10,  10,    reserve,  1200,   20000 )     (Greedy) 

Player 3,4 : Strategy ( 0,  0.7,  2,   10,   5,  500,  1000,   10000 )  (Tight) 

 

 

 

 

 

The distribution of wins between each test is significantly different between each other. It is now more 

about which factor is more important: win distribution between the greedy players or the number of 

Figure 7.10: Graph showing results of Greedy players 
playing against Optimal players with varied sm values 

Figure 7.11: Graph showing results of Tight players 
playing against Optimal players with varied reserve 
values 



 38 

wins by its opposing strategy. When reserve=0 is a balance between the two, its win distribution is not 

very even however, it generates the least wins for its opponents.   

Value for RESERVE Taken Forward: 0 

Round 8 

Strategy 10 Details 

 Further tests on this parameter can be found in Appendix C.   

Optimal: Strategy (3, 0,  1,  10,   10,   0 ,  reserve_penalty,		ja)  

Players 1,2 : Strategy ( 3, 1 ,  0,   10,  10,    0,  reserve_penalty,   20000 )     (Greedy) 

Player 3,4 : Strategy ( 0,  0.7,  2,   10,   5,  500,  1000,   10000 )  (Tight) 

 

 

 

 

 

 

The most consistent yet optimal when minimising opponent win percentage is when the 

reserve_penalty is set to 900. There is not much difference between the other tests however, they are 

not as clinical as when the reserve_penalty is set to 900. The contenders are 0, 100, 900. It was only 

decided that the reserve penalty would be set to 900 because of the percentage win compared to the 

others when playing against other types of player, test details in Appendix C. 

Value for RESERVE PENALTY Taken Forward: 900 

Round 9 

Strategy 11 Details 

Figure 7.12: Graph showing results of Tight players 
playing against Optimal players with varied reserve	
_penalty	values 
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Strategically speaking, an optimal balance between the two values would be an average of the two, so 

ja=1500.  Further tests on this parameter can be found in appendix C.   

Optimal: Strategy (3, 0, 1,  10,   10,   0 ,  900,  ja) 

Players 1,2 : Strategy ( 3, 1 ,  0,   10,  10,    0,  900,   ja )     (Greedy) 

Player 3,4 : Strategy ( 0,  0.7,  2,   10,   5,  500,  1000,   10000 )  (Tight) 

 

 

 

 

 

 

Looking at the data present in the graph when jeopardy aversion is set to 20000 that the most wins are generated 

for this strategy and the least wins for the opposition too. 

Value for JEOPARDY AVERSION Taken Forward: 15000 

Optimal: Strategy (3, 0,  1,  10,   10,   0 ,  900,  20000) 

Random Tester 1 = Strategy  ( 3,  0,  3,     10,  10,  100,   500,   10000) 

To ensure this is the optimal strategy it will be tested against 3 different types of strategies each time. 

Strategy Type % of Wins 

Greedy 29 

Tight 25 

Optimal 46 
 

Strategy Type % of Wins 

Optimal 45 

Random Tester 1 39 

Tight 16 
 

Figure 7.13: Graph showing results of Tight players 
playing against Optimal players with varied jeopardy 
aversion values 
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Strategy Type % of Wins 

Optimal 53 

Random Tester 1 24 

Greedy 23 

Figure 7.14: Three tables showing results between the optimal strategy against a range of other types of strategies. 

Testing it for a range of strategies, in between the Tight and Greedy extremes as well as values that are similar to 

the optimal. The optimal set still beat the rest therefore; this is the final set of values for the heuristic state function. 

Further tests found in Appendix C. 

NOTE: Testing was done on Dec-10 machines, using Spyder, purely because running the tests in 1000 game 

batches took a long time on my laptop.  
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Chapter 8 

Conclusion 

To conclude, I will conduct an overall evaluation of my project. This will include a verdict on whether the final 

implementation meets the aims of the project, a personal reflection of my own challenges and experiences and 

finally, an explanation on how the project could be improved and developed further. 

8.1 Aim and Objectives 

In order to determine of the project was a success, I will review the aims discussed in Section 1.2 and 1.3. 

1. Investigate the different uses of AI techniques such as Minimax and Alpha-beta pruning. 

A literature review was conducted to discover the different uses of AI techniques that have been used to create 

Artificial Players. were discussed and explored in Chapter 2 of the project. From the research gathered, the AI 

that was implemented used a technique called heuristic state evaluation. 

2. Develop a software that can play Monopoly in accordance to its rules 

A software was developed that can play Monopoly with any number of players. Although, there have some aspects 

of the game that were not included, it still contained the strategic aspects. It was demonstrated that the game was 

implemented as throughout the testing phase it was played with three AI players. 

3.  Develop an AI algorithm to play the game of Monopoly 

In Chapter 6, there was mentions of different strategies that an AI could implement. This included a random or 

greedy processes and an algorithm which incorporates heuristic state evaluation functions. 

4. Investigate which strategies are ‘better’ at playing the game 

In Chapter 7 of this project, there was a methodical approach used in order to find an optimal strategy within the 

strategies that were tested. Particularly, the last test was the optimal strategy against several other types of 

strategies to ensure that the optimal strategy was found. 

Overall, I feel the aim of the project has been met as there has been an AI player created and it can play in a game 

of Monopoly. The optimal strategy has shown that it can beat several types of player as its % of wins is higher 

than theirs and at times wins by an overall majority. Although, the game does implement all the rules the core 

pieces were present and the most challenging parts such as the dealing, buying and auctioning were implemented. 
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8.2 Personal Reflection 

Throughout this project I have found experiences that were challenging however, these moments were overcome 

through planning and determination to succeed and make this project a success. The most challenging part was 

trying to understand how to create an AI player that could handle the buying, dealing and auction aspects. Dr 

Brandon Bennett did help in this aspect and provided a structure that went on to be used.  I would say that the 

project has been a success as all aims have been achieved, albeit for a slightly simplified version of Monopoly. I 

have learnt from the project and it has been enjoyable most of the time. It has shown the importance of research 

and planning, whilst still remaining flexible. 

 

8.3 Future Work 

Monopoly 

As mentioned above, this version of Monopoly had not included some parts such as mortgaging and community 

chest and chance cards. It would be nice of the game did include these things. It would be interesting to observe 

if these factors affected the percentage of wins for the strategies implemented. 

AI Player 

The AI player was pretty clever and advanced in terms of the level of the game it noticed as well as how much it 

considered its opponents. However, time was not factored in the heuristic which should be, particularly if rounds 

were going to be added. It could affect how well strategies play because an expensive purchase would not be made 

if there were little rounds remaining. 

Methods 

The AI player could be implemented using a different algorithm, as discussed in Chapter 2. It could be constructed 

through a MiniMax or Alpha- beta pruning. 
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Appendix A 

External Materials 

A.1 Code Repository 

All of the code implemented and used in this project is available on GitLab under the 

following URL: https://gitlab.com/ll14m3k/ai-for-board-games-.git 

Need to be logged in to access. Aq2 
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Appendix B 

monopoly.py 

import random 
#import time 
 
 
def pounds(number): 
    return "£" + str(number) 
 
 
class Player: 
      def __init__(self, name, gender, strategy): 
             self.name = name 
             self.gender = gender 
             self.strategy = strategy 
             self.game = None 
             self.games_won = 0 
             self.index = None 
              
       
      def display(self, state): 
          game_output( "* {:<9} {:>6}   {:>2}  {:>6}   ({})".format( self.name+":", 
                                                   pounds(self.money(state)), 
                                                   len(self.properties(state)), 
                                                   pounds(self.total_rent(state)), 
                                                   int(self.heuristic(state)) 
                                                 ) ) 
     
      def money(self,state): 
          return state.money[self.index] 
           
      def position(self,state): 
          return state.positions[self.index] 
           
      def space(self,state): 
          return state.spaces[self.index] 
           
      def properties(self,state): 
          #game_output("*state.properties", state.properties) 
          return state.properties[self.index] 
     
      def heuristic(self, state): 
          return self.strategy.heuristic(state, self) 
                     
      def __str__(self): 
          return self.name 
       
      def __repr__(self): 
          return self.name 
           
      def owns(self, space): 
          return space in self.properties   
         
      def total_rent(self, state): 
          return sum( [prop.rent(state) for prop in self.properties(state) ] ) 
       
      ## The jeopardy of a player in a given state is the fraction of spaces on 



 48 

      ## the board, which if the player landed on they would lose (because rent 
      ## higher than their total money). 
      def jeopardy(self, state): 
          deadly = 0 
          for space in self.game.board.spaces: 
              if ( space.owner(state) != self 
                   and 
                   space.rent(state) > self.money(state) 
                 ): 
                 deadly += 1 
          return deadly / len(self.game.board.spaces) 
       
       
 
         
class Space: 
    def __init__(self, name, cost, base_rent): 
        self.name = name 
        self.cost = cost 
        self.base_rent = base_rent 
        self.neighbours = [] 
         
    def __string__(self): 
        return self.name 
     
    def owner( self, state): 
        for player in state.players: 
            if self in player.properties(state): 
                return player 
        return None 
     
    def occupants( self, state): 
        return [ player for player in state.players 
                             if state.spaces[player.index] == self] 
         
    def display(self, state): 
        self.owner(state) 
        if self.owner(state) != None: 
            ownerstr = self.owner(state).name 
        else: 
            ownerstr = "" 
        if self.set_owned(state): 
            doublestr = "*" 
        else: 
            doublestr = " " 
        game_output("| {:<18} | {:>4} | {:>4}{} | {:<7} | ".format(self.name, self.cost, self.rent(state), doublestr, 
ownerstr), end = "") 
        occupantstr = ", ".join([str(x) for x in self.occupants(state)]) 
        game_output("{}".format(occupantstr)) 
         
    def add_player(self, p): 
        self.occupants.append(p) 
         
    def remove_player(self, p): 
        self.occupants.remove(p) 
         
    def set_owned(self, state): 
        owner = self.owner(state) 
        if owner == None: 
            return False 
        for p in self.neighbours: 
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              if p.owner(state) != owner: 
                  return False 
        return True 
         
    def rent(self, state): 
        if self.set_owned(state): 
            return self.base_rent * 2 
        else: 
            return self.base_rent 
 
 
 
class GameState: 
   def __init__(self): 
        pass 
               
   @staticmethod   
   def startState( game ): 
        gs = GameState() 
        gs.game = game 
        gs.board = Board() 
        gs.players = game.players.copy() 
         
        gs.positions = [0 for p in gs.players] 
        gs.spaces = [gs.board.spaces[p] for p in gs.positions ] 
        gs.money = [game.start_money for p in gs.players] 
        gs.properties = [ [] for p in gs.players ] 
        
         
        gs.round = 1 
        gs.current_player_num = 0 
        gs.phase = "turn start" 
        gs.display = "verbose" 
        return gs 
         
   def clone( self ): 
       newstate = GameState() 
        
       newstate.game = self.game 
       newstate.board = self.board 
       newstate.players = self.players 
        
       newstate.positions  = [x for x in self.positions] 
       newstate.spaces     = [x for x in self.spaces] 
       newstate.money      = self.money.copy() 
       newstate.properties = [x.copy() for x in self.properties] 
        
       newstate.round              = self.round 
       newstate.current_player_num = self.current_player_num 
       newstate.phase              = self.phase 
       newstate.display            = self.display 
       return newstate 
        
        
   ## Calcuate heursitic gain from player going from current state to newstate. 
   ## Will be negative if heuristic value goes down. 
   def gainFromStateChange( self, player, newstate): 
       return player.heuristic(newstate) - player.heuristic(self) 
        
   def occupants(self, space): 
       occ_list = [] 
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       for i in range(self.game.num_players): 
           if self.spaces[i] == space: 
               occ_list.append(self.players[i]) 
       return occ_list 
             
   def display_state(self): 
       game_output("-----------------------------------------------") 
       game_output("| LOCATION           | COST | RENT  | OWNER   | OCCUPANTS" ) 
       game_output("|---------------------------------------------|" ) 
       for space in self.board.spaces: 
            space.display(self) 
       game_output("----------------------------------------------") 
       for player in self.players: 
            player.display(self) 
     
   def display_phase(self): 
       game_output("Round: {},  Player: {},  Phase: {} ({})".format(self.round, 
                                                         self.current_player().name, 
                                                         self.phase, 
                                                         self.phase)) 
        
   def current_player(self): 
       return self.players[self.current_player_num] 
    
   def progress(self, display="verbose"): 
       player = self.current_player() 
       game_output("Phase:", self.phase) 
        
       if self.phase == "round start": 
          self.display_state() 
          game_output( "Round", self.round) 
          self.phase = "turn start" 
          return 
        
       if self.phase == "turn start": 
          game_output( player, "to go.") 
          if player.properties(self): 
              self.phase = "opportunity to sell" 
              return 
          else: 
              self.phase = "roll and move" 
              return 
       
       if self.phase == "opportunity to sell": 
          game_output( player, "has the following properties for sale:") 
          props_for_sale = player.properties(self) 
          game_output( ", ".join([prop.name for prop in props_for_sale])) 
          for prop in props_for_sale: 
              offers = [(op, highest_offer_giving_margin_gain(self, op, player, prop, op.strategy.buy_margin)) 
                        for op in player.opponents] 
              offers = [offer for offer in offers if offer[1] and offer[1] > 0] 
              if offers == []: 
                  game_output("No offers were made to buy {}.".format(prop.name)) 
     
              for op, offer in offers: 
                  game_output( "*** {} offers £{} for {}.".format(op.name, offer, prop.name)) 
                   
              offer_result_states =  [ (op, offer, 
                                       resultOfTrade(self, player, op, prop, offer)) 
                                       for (op, offer) in offers ] 
              offer_result_state_vals = [ (op, offer, result_state, 



 51 

                                           player.heuristic(result_state)) 
                                           for (op, offer, result_state) in offer_result_states] 
               
              acceptable_offer_result_state_vals = [ x for x in offer_result_state_vals if x[3] >= 
player.strategy.sell_margin] 
 
              if acceptable_offer_result_state_vals == []: 
                  if len(offers) > 1: 
                     game_output(player, "does not accept any of these offers.") 
                  else: 
                     game_output(player, "does not accept any of this offer.") 
                  continue 
               
              if len(acceptable_offer_result_state_vals) > 1: 
                 acceptable_offer_result_state_vals.sort(key=lambda x: x[3])   
              accepted_offer =  acceptable_offer_result_state_vals[-1] 
              buyer = accepted_offer[0] 
              amount = accepted_offer[1] 
              game_output( "DEAL: {} agrees to sell {} to {} for £{}.".format(player.name, prop.name, buyer.name, 
amount )) 
               
               
              #resultAllvalue = buyer.heuristic(resultAll) 
               
          self.phase = "roll and move" 
          return 
        
       if self.phase == "roll and move": 
          player = self.current_player() 
          dice_num = random.randint(1,6) 
          game_output( player.name, "rolls", str(dice_num)+"!" ) 
          self.positions[player.index] = (self.positions[player.index] + dice_num)%self.board.num_spaces 
          new_space = self.board.spaces[self.positions[player.index]] 
          self.spaces[player.index] =  new_space 
         
          game_output( player.name, "moves to", new_space.name + "." ) 
 
          if new_space.cost == 0: 
             game_output("This place cannot be bought.") 
             self.phase = "end of turn" 
             return 
          if new_space.owner(self): ## someone already owns the space 
             game_output("This property is owned by {}.".format(new_space.owner(self).name)) 
             if new_space.owner(self) == player: 
                game_output("{} enjoys visiting {}.".format(player.name, new_space.name)) 
             else:     
                game_output( "{} must pay £{} to {}.".format(player, new_space.rent(self), 
new_space.owner(self).name) ) 
                player_money = self.money[player.index] 
                if player_money < new_space.rent(self): ## Player is knocked out! 
                   #game_output("!!", player, "cannot pay and is knocked out of the game !!") 
                   self.money[new_space.owner(self).index] += player_money 
                   game_output( "{} gets £{} (all {}'s remaining money).".format(new_space.owner(self).name, 
player_money, player.name)) 
                   self.money[player.index] = 0 
                   self.phase = "bankrupcy" 
                   return player 
                else:     
                   self.money[player.index] -= new_space.rent(self) 
                   self.money[new_space.owner(self).index] += new_space.rent(self) 
             self.phase = "end of turn" 



 52 

             return 
          else: ## the space is available to buy 
             game_output("This property is for sale for {} spondoolies.".format(new_space.cost)) 
             if player.money(self) < player.space(self).cost: 
                game_output( player.name, "cannot afford", player.space(self).name + "." ) 
                self.phase = "auction" 
                return 
             else: 
                self.phase = "opportunity to buy" 
                return 
        
       ### -------------- BUY PHASE             
       if self.phase == "opportunity to buy":   # buying phase 
           player = self.current_player() 
           space = player.space(self) 
 
           buy_result_state = resultOfBuy( self, player, space, space.cost) 
           buy_value = player.heuristic(buy_result_state) 
            
           op_buy_states = [ resultOfBuy( self, op, space, space.cost) 
                             for op in player.opponents] 
           op_buy_values = [player.heuristic(s) for s in op_buy_states] 
           worst_op_buy_value = min( op_buy_values ) 
            
           #game_output(player, "evaluates current state as:", player.heuristic(self) ) 
           #game_output(player, "evaluates the result of buying as:", result_value ) 
           
           #gain = self.gainFromStateChange( player, buy_result_state ) 
           #game_output("Heuristic gain from buying:", gain) 
            
           ## if player.money(self) < space.cost + player.strategy.reserve: 
           #if gain < 0: 
           if True or buy_value < worst_op_buy_value: 
              game_output( player.name, "declines to buy", space.name + "." ) 
              self.phase = "auction" 
              return 
           game_output( player.name, "buys", space.name + "." ) 
           (self.properties[player.index]).append(space) 
           self.money[player.index] -=  space.cost 
           self.phase = "end of turn" 
           return 
                     
       if self.phase == "auction": 
           auction_space = self.spaces[player.index] 
           start_index = player.index + 1 
           game_output( auction_space.name, "is up for auction.") 
           bid_order_players = players[start_index:].copy() + players[0:start_index].copy() 
           winner, bid = auction( self, auction_space, 0, bid_order_players) 
           game_output( "{} buys {} for £{}.".format(winner, auction_space.name, bid)) 
           (self.properties[winner.index]).append(auction_space) 
           self.money[winner.index] -=  bid 
           self.phase = "end of turn" 
           return 
           
       if self.phase == "end of turn": 
             if display == "verbose": 
                self.display_state() 
             self.current_player_num += 1 
             self.phase = "turn start" 
             if self.current_player_num == len(self.players): 
                 self.current_player_num = 0 
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                 self.round += 1 
                 self.phase = "round start" 
                   
 
def resultOfBuy(state, player, space, cost): 
       newstate = state.clone() 
       (newstate.properties[player.index]).append(space) 
       newstate.money[player.index] -= cost 
       return newstate 
        
def resultOfTrade(state, seller, buyer, space, cost): 
       newstate = state.clone() 
       (newstate.properties[seller.index]).remove(space) 
       (newstate.properties[buyer.index]).append(space) 
       newstate.money[seller.index] += cost   
       newstate.money[buyer.index] -= cost   
       return newstate 
 
 
def auction(state, space, bid, players): 
       player = players[0] 
       if len(players) == 1: 
          return (player, bid) 
       if player.money(state) <= bid: 
           game_output( player, "passes. (Not enough money to bid)") 
           return auction(state, space, bid, players[1:]) 
       buy_result_state = resultOfBuy( state, player, space, bid) 
       buy_value = player.heuristic(buy_result_state) 
       op_buy_states = [ resultOfBuy( state, op, space, bid) 
                             for op in player.opponents] 
       op_buy_values = [player.heuristic(s) for s in op_buy_states] 
       worst_op_buy_value = min( op_buy_values ) 
       if buy_value > worst_op_buy_value: 
          rotate = players[1:].copy() 
          rotate.append(player) 
          game_output( "{} bids {}.".format(player, bid+1) ) 
          return auction( state, space, bid+1, rotate ) 
       else: 
          game_output( player, "passes.") 
          return auction(state, space, bid, players[1:]) 
            
 
### This function should return the highest offer in the range low--high (L-H) that a buyer 
### of space can make to its owner and make a heuristic gain for at least the given margin 
 
### (A) If a 0 payment does not make the gain margin gm then None is returned. 
### (B) If the total money T available makes the margin this will be returned 
### If neither (A) nor (B) hold then successively shrink the range by evaluating 
### the gain at the midpoint.           
       
def highest_offer_giving_margin_gain(state, buyer, seller, space, margin): 
         targetValue = buyer.heuristic(state) + margin 
         result0 = resultOfTrade(state, seller, buyer, space, 0) 
         result0value = buyer.heuristic(result0) 
         if result0value < targetValue: 
             return None 
         allmoney = buyer.money(state) 
         resultAll = resultOfTrade(state, seller, buyer, space, allmoney) 
         resultAllvalue = buyer.heuristic(resultAll) 
         if resultAllvalue >= targetValue: 
            return allmoney 
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         return highest_offer_in_range_meeting_target(state, buyer, seller, space, 
                                                          0, allmoney, targetValue) 
          
def highest_offer_in_range_meeting_target(state, buyer, seller, space, low, high, targetValue): 
         if low + 1 == high: 
             return low 
         mid = int( (low+high)/2 ) 
         resultMid = resultOfTrade(state, seller, buyer, space, mid) 
         midValue = buyer.heuristic(resultMid) 
         if midValue < targetValue: 
             return highest_offer_in_range_meeting_target(state, buyer, seller, space, low, mid, targetValue) 
         else: 
             return highest_offer_in_range_meeting_target(state, buyer, seller, space, mid, high, targetValue) 
 
class Game: 
      def __init__(self, players, start_money, max_rounds): 
          self.players = players 
          self.start_money = start_money 
          self.max_rounds = max_rounds 
          self.num_players = len(players) 
           
          self.state = GameState.startState(self) 
          self.board = self.state.board 
          for i in range(len(players)): 
              players[i].game = self 
              players[i].index = i 
              players[i].opponents = players[i+1:].copy() + players[:i].copy() 
 
          game_output("** ==== Leodopoly: the Leeds landlords game ==== **") 
 
      def play(self, display="verbose"): 
          self.state.display_state() 
           
          while self.max_rounds == 0 or self.state.round <= self.max_rounds: 
                result = self.state.progress(display) 
                if self.state.phase == "bankrupcy": 
                    if result.gender == "male": 
                        pronoun = "his" 
                    else: 
                        pronoun = "her" 
                    game_output( result, "has lost all", pronoun, "money and is declared BANKRUPT!" ) 
                    break 
                 
          game_output("\nThe final state of play:")       
          self.state.display_state() 
                 
          if  self.state.phase == "bankrupcy": 
              game_output("\n* The game ended in round {} due to bankrupcy).".format(self.state.round)) 
          else: 
              game_output("\n* End of game (the full {} rounds have been played).".format(self.max_rounds)) 
           
          winning_amount = max([player.money(self.state) for player in players]) 
          winners = [player for player in players if player.money(self.state) == winning_amount] 
          if len(winners) == 1: 
             winner = winners[0] 
             game_output( "* The winner is {} with £{}.".format(winner.name, winning_amount)) 
          else: 
             winners_str = ", ".join([winner.name for winner in winners]) 
             game_output( "* The winners are {}, who have £{}.".format(winners_str,winning_amount)) 
          return winners 
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      def check_for_quit(self): 
          key = input( "Press <return> to continue, or enter 'q' to quit: ")   
          if key == "q" or key == "Q": 
              return True 
          return False 
   
 
 
 
 
     
class Board:     
    def __init__( self ): 
       self.go =  Space("Millennium Square",   0,  0) 
       ## Woodhouse 
       wh1 = Space("Woodhouse Street",  60, 20) 
       wh2 = Space("Melville Place",  50, 12) 
       wh3 = Space("Quarry Mount",  30, 8) 
       ## Hyde Park 
       hp1 = Space("Hyde Park Road", 200, 60) 
       hp2 = Space("Brudenell Road", 120, 40) 
       hp3 = Space("Victoria Road", 250, 80) 
       ## Headingley 
       h1  = Space("Bearpit Gardens", 300,  2) 
       h2  = Space("North Lane",    100,   50) 
       ## Education 
       e1 = Space("Leeds University", 700, 150) 
       e2 = Space("Notre Dame", 200, 60) 
        
       self.spaces = [ 
               self.go, 
               wh1, wh2, wh3, 
               e1, 
               hp1, hp2, hp3, 
               e2, 
               h1, h2 
             ] 
        
       set1 = [wh1, wh2, wh3] 
       set2 = [hp1, hp2, hp3] 
       set3 = [h1,  h2] 
       set4 = [e1,e2] 
       self.sets = [set1, set2, set3, set4] 
       self.num_spaces = len(self.spaces) 
       for propset in self.sets: 
           for prop in propset: 
               #game_output(prop.name) 
               prop.neighbours = propset.copy() 
               prop.neighbours.remove(prop) 
     
def test_neighbours(): 
     board = Board() 
     for space in board.spaces: 
         game_output("{}: {}".format(space.name, ", ".join([s.name for s in space.neighbours])))    
     
     
class Strategy:    
      def __init__(self, rm, opmm, oprm, bm, sm, reserve, reserve_penalty, ja): 
          self.rent_mult = rm                # positive multiplier of total rent 
          self.opponent_money_mult = opmm    # negative multiplier of total opponents' money 
          self.opponent_rent_mult = oprm     # negative multiplier of total opponents' rent 



 56 

          self.buy_margin = bm               # gain in heuristic required to buy property 
          self.sell_margin = sm              # gain in heuristic required to sell property 
          self.reserve = reserve                  # minimum reserve cash 
          self.reserve_penalty = reserve_penalty  # negative applied if money lower than reserve 
          self.jeopardy_aversion = ja        # negative multiplier of jeopardy 
          ## Jeopardy is calculated as the fraction of spaces owned by other plyers, whose 
          ## rent is more than the players money. 
           
      def heuristic(self, state, player): 
          value = player.money(state) 
          value += player.total_rent(state) * player.strategy.rent_mult 
          #opponents = [p for p in state.players if p != player] 
          value -= sum( [opponent.money(state) for opponent in player.opponents] ) * self.opponent_money_mult 
          value -= sum( [opponent.total_rent(state) for opponent in player.opponents] ) * self.opponent_rent_mult 
           
          value -= player.jeopardy(state) * self.jeopardy_aversion 
           
          if (player.money(state) < self.reserve): 
              value -= self.reserve_penalty 
           
          return value 
      
GAME_OUTPUT = True 
def game_output(*args, end="\n"): 
    if GAME_OUTPUT: 
       print(*args, end=end)     
     
# Strategies 
#               rm opmm  oprm  bm   sm   res   respen  jep av 
s1 =  Strategy( 0,  0.7,  2,   10,   5,  500,  1000,   10000) #TIGHT BOUNDARY 
s2 =  Strategy( 3, 0,  2,   50,  50,    0,  1200,   20000) #GREEDY BOUNDARY 
s3 =  Strategy( 0,   0,   0,    0,   0,   0,     0 ,   0    ) #IRRATIONAL BOUNDARY   
s4 =  Strategy( 3,  0,  3,     10,  10,  100,   500,   10000) #RANDOM TESTER 1 
s5 =  Strategy( 2,  0.1,  3,   10,  10,  300,   500,   10000) #RANDOM TESTER 2 
s6 =  Strategy( 9,  0,    1,   10,  10,   0 ,   900,   20000) #RANDOM TESTER 3 
s7 =  Strategy( 3,  0,    1,   10,  10,   0 ,   900,   20000) #OPTIMAL STRATEGY 
 
     
brandon = Player("Brandon", "male",   s1 ) 
marya   = Player("Marya",   "female", s1 ) 
lucia   = Player("Lucia",   "female", s2 ) 
AI = Player("AI",   "female", s2 ) 
 
 
 
players = [ brandon, marya, lucia, AI] 
 
############# Players, number of games, start money, number of rounds, game output      
 
def test_series(players, num_games, start_money, game_length, game_output=False): 
      global GAME_OUTPUT 
      GAME_OUTPUT = game_output 
      if GAME_OUTPUT == False: 
          print("Running wihout game output ...\n") 
      games_played = 0 
      while games_played < num_games: 
            random.shuffle(players) 
            game = Game( players, start_money, game_length ) 
            winners = game.play("no display") 
            if len(winners) == 1: ## if there is a unique winner 
                winners[0].games_won += 1 
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                games_played += 1 
      GAME_OUTPUT = True 
      print("PLAYER     WINS  PERCENT  |   RM  OPM  OPR   BM  SM   RES  RPEN   JEPAV") 
      for player in players: 
          won = player.games_won 
          percent = ((won*100)/num_games) 
          s = player.strategy 
          print("{:<9} {:>4}    {:>5.2f}%  |  {:>3.1f}  {:>3.1f} {:4.1f}  {:>3} {:>3}  {:>4}  {:>4}  {:>6}" 
                 .format(player.name, won, percent, 
                         s.rent_mult, 
                         s.opponent_money_mult,s.opponent_rent_mult, 
                         s.buy_margin, s.sell_margin, 
                         s.reserve, s.reserve_penalty, 
                         s.jeopardy_aversion ) )   
              
test_series( players, 1000, 500, 40, game_output=False) 
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Appendix C 

Heuristic Parameter Tests 

 

 

 

 

 

 

 

 

Figure C.1.1- Graph projecting the results of the oprm parameter changing from 6-10 

 

 

 

 

 

 

 

 Figure C.1.2- Graph projecting the results of the bm parameter changing from 60-100 
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 Figure C.1.3- Graph projecting the results of the sm parameter changing from 30-50 

 

 

 

 

 

 

 

 

Figure C.1.4- Graph projecting the results of the reserve penalty parameter changing from 0-500 
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Figure C.1.5- Graph projecting the results of the jeopardy aversion parameter changing from 10000-

15000 

 

 

 

 

 

 

 

 

Figure C.1.5- Graph projecting the results of the reserve penalty parameter changing from 0/100/900 
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Strategy Type % of Wins 
Optimal 48 
Random Tester 1 11 
Random Tester 2 41 

 

Figure C.1.6- Graph projecting the results of optimal set of parameters against two other strategies. 

Random Tester 2: ( 2,  0.1,  3,   10,  10,  300,   500,   10000) 

 
Strategy Type % of Wins 
Optimal 55 
Random Tester 3 20 
Random Tester 1 25 
 

Figure C.1.6- Graph projecting the results of optimal set of parameters against two other strategies. 

Random Tester 3: (9,  0,    1,   10,  10,   0 ,   900,   20000) 


