

Develop an AI algorithm to play the board game Blokus

Sharon Mathew

Submitted in accordance with the requirements for the degree of

MSc Mobile Computing and Communication Networks

2016/2017

School of Computing
FACULTY OF ENGINEERING

- ii -

The candidate confirms that the following have been submitted:

Items Format Recipient(s) and Date

Dissertation Report x2 SSO (23/08/17)

Dissertation PDF VLE (23/08/17)

Blokus Code Software codes Supervisor, assessor

(23/08/17)

Type of Project: Exploratory Software

The candidate confirms that the work submitted is their own and the appropriate

credit has been given where reference has been made to the work of others.

I understand that failure to attribute material which is obtained from another source

may be considered as plagiarism.

 Signature of Student: ______________________________

© 2017 The University of Leeds and Sharon Mathew

- iii -

Abstract

The project investigates the development of a high-quality artificial player that can defeat

human players at the board game Blokus. Various artificial intelligence techniques have

been investigated, and the minimax algorithm and heuristic state evaluation were chosen to

implement the artificial player.

- iv -

Acknowledgement

Firstly, I would like to thank Jesus Christ for guiding me throughout this dissertation

according to Luke 12:12. You have really proved Luke 1:37.

Thanks to my family and friends for the support and encouragement.

Finally, I would like to thank my supervisor Dr Brandon Bennett for pointing me the right

direction and always supporting me throughout my project.

- v -

Table of Contents

Abstract ... iii

Acknowledgement.. iv

Table of Contents .. v

1 Introduction ... 1

1.1 Dissertation Outline ... 1

2 Aim and objectives.. 3

2.1 Aim .. 3

2.2 Objectives ... 3

2.3 Project Plan ... 3

3 Background ... 5

3.1 Game Theory .. 5

3.1.1 Game .. 5

3.1.2 Terminology in a game .. 6

3.1.3 Game classifications ... 6

3.1.4 Game Strategies ... 10

3.1.5 Game Representations ... 11

3.1.6 Solved Games ... 12

3.1.7 Game Tree .. 13

3.2 Artificial Intelligence Techniques ... 13

3.2.1 Heuristic State Evaluation ... 13

3.2.2 Minimax and Maximin ... 14

3.2.3 α-β pruning .. 16

3.2.4 Expectiminimax ... 17

3.2.5 Cutting off search .. 18

3.2.6 Machine learning ... 18

3.2.7 Adaptive Game AI ... 19

3.3 Implementation Language ... 20

3.4 Blokus Duo .. 20

3.4.1 Rules ... 21

3.4.2 Scoring .. 22

3.4.3 Winning Strategies .. 22

3.4.4 Classification ... 22

- vi -

3.4.5 Approach ... 23

4 Design .. 25

4.1 Workflow ... 25

4.2 Game Design .. 27

4.3 AI Player Design ... 30

5 Implementation .. 34

5.1 Game Implementation ... 34

5.2 AI Player Implementation .. 41

6 Testing ... 44

6.1 Depth Limit .. 44

6.2 Heuristic .. 45

6.4.1 Results .. 51

7 Evaluation .. 53

7.1 Testing results ... 53

7.2 Project Objectives ... 53

7.3 Project Evaluation ... 54

8 Conclusion ... 56

8.1 Future Work .. 56

8.1.1 Test more strategies to find a better heuristic 56

8.1.2 Adaptive AI .. 56

8.1.3 Add more players .. 57

8.1.4 Include α-β pruning ... 57

References ... 58

Appendix .. 60

settings.py .. 60

library.py ... 66

blokus.py ... 78

- 1 -

1 Introduction

In the early days of Artificial Intelligence (AI) [5] in game playing, the easiest path to

achieving high performance was believed to be imitating the human approach. This

approach was difficult due to problems such as apprehending and encoding human

knowledge. Human strategies are not essentially the best computational strategy. Hence, a

search-intensive approach came about which produced high-quality performance; a large

influence in the field of AI in game playing. Since then, various search techniques were

developed and applied to problems such as optimisation, planning, and bioinformatics.

There has been numerous research conducted on AI programs that play adversarial games

using search-intensive AI techniques. Deterministic [5] board games have been researched

deeply, and very efficient implementations of AI players in games have been implemented

for games such as Chess and Checkers. AI players in these perfect information games have

been developed to such high-quality using search-intensive techniques, that it has been able

to defeat the best human players in the world. However, many games are yet to be studied

to implement an AI player that can defeat humans. Therefore, there is a need to investigate

on more board games to find a solution that can effectively beat human players. Different

games require different aspects of intelligence.

In this project, the board game called Blokus has been chosen for study. Various AI

techniques can be applied for the program to play effectively against humans. However,

after some research, it has been decided that AI techniques including minimax algorithm and

heuristic state evaluation will be used to develop the AI player of the board game.

1.1 Dissertation Outline

Chapter 1 – Introduction sets the scene as well as introduces and motivates the project.

Chapter 2 – Aim and Objectives state the aim and objectives of the project. The project

plan is also discussed with a timescale provided.

Chapter 3 – Background describes the project area in detail and explains decisions taken

within the project and why.

Chapter 4 – Design discusses the plan and workflow of the implementation that was carried

out.

- 2 -

Chapter 5 – Implementation presents how the program was developed and why certain

decisions within the task were made.

Chapter 6 – Testing is a description of the tests carried out and how it was done.

Chapter 7 – Evaluation analyses the test results and provides a discussion on whether the

project objectives were met and analyses the project itself by discussing what went well and

what could have improved.

Chapter 8 – Conclusion discusses the project also, generalises and states possible future

work for the project.

- 3 -

2 Aim and objectives

The aim and objectives will be used within the project as checklists to make sure that the

project is going the right way. The objectives were decided after some amount of

background research was conducted.

2.1 Aim

To investigate and implement the use of AI techniques to produce a program that can

‘intelligently’ play the game Blokus.

2.2 Objectives

1. Develop a software capable of correctly playing the game of Blokus per its rules.

2. Develop a simple rule-based AI algorithm to play the game of Blokus.

3. Develop a GUI interface to show the game states.

4. Investigate the use of AI techniques such as Minimax, Heuristic state evaluation,

Machine learning to enable the algorithm to play ‘intelligently’.

2.3 Project Plan

The chart shown in Figure 2.1 describes how time will be split to meet the aim and

objectives. The schedule for the project starts from the beginning of March up to the end of

August. March has mainly been used to think about the implementation of the board game

and to do some background research on the topic to understand the context of the project

properly. April was spent on doing the deliverables for this module while also thinking about

how the implementation of the core game will be made. May to start of June has been left

blank due to exams and revision as this is also quite important. Once exams finish at the

start of June, the design and the implementation stage of the project will begin. The testing

stage will be in mid-August which is also near the end of time for the implementation of the

project. The results will be gathered and analysed and also the bugs found will be fixed, and

the program will then be re-tested. The write up of the report will be a continuing process,

and this will be written while the design and the implementation stage is being carried on. As

per the project plan, it is the aim to finish the project by the end of August to be able to error

check, format and submit the report by the start of September.

- 4 -

The methodology chosen for this project is an iterative waterfall model. This model was

selected to meet each objective one by one by iterating through the design and

implementation stage depending on whether there is enough time left on each objective. I

have left extra time for each task than required if I come across any unexpected problem. If I

do not come across any problem, I should have enough time to implement the code to allow

a human to play against the program.

There will be weekly meetings arranged with my supervisor every week to ensure that I am

going on the right track with my project and solving any issues or doubts that I may have

regarding the project.

Task Name Start Finish
Duration

Mar Apr May Jun Jul Aug

Background 01/03/17 30/04/17

Design 05/06/17 05/08/17

Implementation 10/06/17 15/08/17

Testing
13/08/17 18/08/17

Write up 15/07/16 30/08/17

Figure 2.1: Project Plan

- 5 -

3 Background

Background research of a project is necessary to gain an understanding of the project itself

and information on how to carry forward the project to meet the aim. There may already be

various research and projects conducted that are related to this project. This knowledge can

be used to aid and implement within my project. Therefore, background research provides

an excellent base and allows decisions to be made on what to do regarding the project.

3.1 Game Theory

Modern game theory [6] began with the work of Zermelo in 1913, Borel in 1921, von

Neumann in 1928 and the seminal book of von Neumann and Morgenstern in 1944. Game

theory is the study of models of conflict and cooperation between intelligent decision makers

within a competitive situation. It provides general techniques to analyse the situation.

Optimal decisions are made by two or more individuals strategically where every decision

made influences the welfare of every individual in the situation. This theory is used within

several areas including psychology, evolutionary biology, economics, and business.

3.1.1 Game

Game theory does not just apply to recreational games but the term “game” refers to a

situation in which individuals or independent actors share formal rules and consequences

[7]. To be able to understand and investigate different classifications of games, and game

strategies, it is important to know the basics of a game. The components of a game consist

of [8]:

• Rules: A game has strict rules which must be followed as this lays down the

boundaries of what is allowed and what isn’t. These boundaries allow the game to be

analysed to have a set of possible moves which may be already known in advance.

• Outcomes: Each game can have various possible outcomes. Each outcome is a

value of one or more decisions made.

• Payoffs: Each outcome produces payoffs for the players. Every player wants to win

the game.

• Uncertainty of the Outcome: The outcome of a game is unpredictable because if it

is a one player game, then it will have some chance element and if it is two or more

player game, a player cannot know in advance the move of another player; causing

uncertainty.

- 6 -

• Decision-making: A decision must be made in a game to continue the game

forward. These decisions allow the ability to analyse the game using game theory.

• No cheating: Cheating is when the game is not played as per the rules. Game

theory always follows the rules.

3.1.2 Terminology in a game

Game: Described by a complete set of rules

Play: Instance of a game

State: A specific arrangement within the game using the existing components

Move: A decision made at a state

Strategy: A plan to aid the player to choose a move at every possible state

Rational behaviour: Each player has different behaviour and will try to optimise their payoffs

while being aware that the other players are trying to optimise their payoffs.

3.1.3 Game classifications

One, Two, or N-player

Games that have a finite number of players are referred to as an n-player game [9]. The

number of players in a game effect the strategy of each player to win the game; the higher

the number of players, the higher the difficulty in the assessment of the next possible move

chosen by each player [6]. This difficulty is also influenced by the frequency of the decisions

made by each player. In one player games, such as roulette, it has uncertain elements and

is not influenced by any players. There are no decisions made in games such as these since

the number is usually chosen randomly by the player; therefore, it is not possible to create a

winning strategy for such games. In one-player games that do not have uncertain elements,

the winning strategy will be straightforward. One-player games are usually not considered

game theoretical.

In two or more player games, each player will try to maximise it’s expected payoff. This can

be either done by only increasing one’s payoff, by decreasing the other player’s payoff, or by

doing both in a move (further explained in Section 3.1.4). When a player chooses a move,

this is influenced by what move the next player may choose next.

- 7 -

An example of a two-player game [6]: For Player 1 to select a move in a play, Player 1 will

need to assess each of Player 2’s possible choices. To do this, Player 1 must be in the

shoes of Player 2. At this moment, Player 2 will be trying to solve its problem by considering

all the possible moves of Player 1. Here, Player 2 may be putting itself into the shoes of

Player 1. So, the solution to solving each player’s problem depends on the solution to the

other player’s problem. Therefore, to maximise the payoff of the current player, each move

of both player’s must be analysed together, like a system of equations.

Simultaneous or Sequential

In a simultaneous game, each player has one move each play and every player may make a

move concurrently in a play; e.g. Rock-Paper-Scissors. If the players do not move

concurrently, then the players playing after a player will not have knowledge of the earlier

moves made by the player which effectually makes the game simultaneous.

In a sequential game, only one player moves in a play. In such games, it is possible for a

player to move several times in a play; e.g. Monopoly. Unlike simultaneous games, a player

will have some knowledge about all the previous moves made by the other players. This

knowledge may not be perfect information but can be some or minimal amount of

knowledge.

A simultaneous game and a sequential game are both represented differently within a game.

Simultaneous games are denoted by payoff matrices, and sequential games are denoted by

game trees. The representations are further discussed in detail below

There also exist games that are not simultaneous or sequential [8].

Deterministic or Stochastic

At a specific state of the game, when a specific move is played, the resulting state will

always be the same regardless of how many times the same move is played in the same

state; this is a deterministic game. There are no other influences on the game, and therefore,

the resulting state cannot be changed. In a deterministic game, a state can be recreated

from the same order of moves that were played.

A game is stochastic when there is some element of randomness. Some one player games

are stochastic because there is a stand-in player who makes random moves. This player is

not considered as a second player but is there to provide the element of randomness.

Element of randomness means when there are moves made due to “chance of nature”; this

includes the rolling of a dice, shuffling of cards, etc. In stochastic games, when a specific

- 8 -

move is played at a specific state the resulting state may change each time it is repeated;

causing uncertainty. In the existence of uncertainty, payoffs are calculated by estimation

using the estimated average of the probabilities of the next possible states [10].

Perfect or Imperfect Information

Perfect information is when a player has full knowledge about the current state. In perfect

information games, each player has full knowledge of the previous moves made by every

player. The player can know everything about the current state by knowing the initial state

and the previous moves made by each player. This makes every player fully aware of the

current state which also involves the knowledge of the pieces/cards each player has left, the

possible moves that can be made, the payoffs of each possible move at a state, etc. Perfect

information is not the same as complete information where each player knows the strategies

and payoffs that are available to the other players. Instead, perfect information allows every

player to have the same amount of knowledge as each other [11]. Examples include chess,

tic-tac-toe, checkers, etc.

Imperfect Information is the opposite of perfect information where the player can have no

knowledge or minimal knowledge about a specific state. Simultaneous games are an

example of such games where a player may not have any knowledge about other player’s

previous moves or pieces/cards they have left either at the start of the game or through the

entire game. Examples include UNO, Poker, Scrabble, etc.

Zero Sum or Non-Zero Sum

Zero sum games [8] are when players cannot modify the resources within the game by

adding or taking away. In this case, the total payoffs in the game for all the players, add to

zero. In such games, a gain for a player is an equal amount of loss for another player. A

good example of such a game is chess where the gain of a player is by attacking and

capturing a piece of another player which in turn is a loss for the other player. In a zero-sum

game, a win can be defined as +1, a loss can be defined as -1, and a draw can be defined

as 0. Such games are called strictly competitive games.

Non-zero sum games are where all the players can gain together and lose together. So, the

total payoffs in a game for all the players can add up to be less than or higher than zero. A

gain to one player does not necessarily result in the loss to another player. Games that can

have more than one winner naturally comes under this type of games.

- 9 -

Symmetric or Asymmetric

A symmetric game [12] is when a resulting game for a specific player does not change

depending on the identity of the player. Even if the identity of the player changes, the

resulting payoff to the strategies of each player stays the same. Two player games are

usually symmetric, and this is if both the players use the same strategy space and if they

swap the strategies then they swap the payoffs [13]. Figure 3.1a shows an example of a

symmetric game which lists the payoffs for Player 1 and Player 2; a player’s payoff can be

expressed as a transpose of the other player’s payoff [12]. Examples of such games include

prisoner’s dilemma, chicken, and battle of the sexes.

Asymmetric games are the opposite of symmetric games where the identity of the player

affects the resulting game. Such games usually do not have same strategies used by every

player. However, it is still possible to use same strategies and for the game to still be

asymmetric; Figure 3.1b shows an example of an asymmetric game.

Cooperative or Non-Cooperative

If a game [6] has players who can form a commitment or a contract that is externally

enforced, this is called a cooperative game. The competition is between groups of players

rather than between each player. The coalition of groups of players is due to external

enforcement. If there is a contract or a negotiation made between two players, then other

players can also contribute to this. Cooperative games [14] are analysed by predicting which

coalitions will form, the combined moves that the groups make, and the consequential

summed payoffs. Cooperative games have three or more players because the objective is to

win the game, so in a two-player game it would defy the purpose to play the game if a player

1, 1 0, 3

3, 0 4, 4

A

B

B A

Player 2

Player 1

1, 2 0, 0

0, 0 1, 2

A

B

B A

Player 2

Player 1

Figure 3.1: (a) a symmetric game (b) an asymmetric game

(a) (b)

- 10 -

is aiding another player in winning the game. However, there are two player cooperative

games where the players play together to win against the game.

Non-cooperative games are where players may not form a cooperation or an alliance with

each other. If they do form a commitment, it is a self-enforced agreement.

Cooperative games only provide high-level approach which describes the structure,

strategies and the payoffs of coalitions. However, non-cooperative games look at these as

well as the result of bargaining procedures on payoffs with each alliance. Therefore,

cooperative games are analysed through the approach of non-cooperative games given the

adequate assumptions to cover all the possible strategies that are available to all the players

due to the external enforcement of coalition between players.

3.1.4 Game Strategies

There are two main types of strategies: pure and mixed strategy. A pure strategy specifies a

complete description of how a player will play the game. In each state, the player will select

the move to play using the description to determine the move. The strategy set of a player is

the combination of the pure strategies available to that player.

A mixed strategy [10, 15] involves randomisation, using positive probabilities that summate

to 1, to determine the player’s move to play. Probability is given to a minimum of two moves

in distinct pure strategies. Players can then randomly choose from one of the pure strategies

that were given a specific probability. Probabilities are continuous; therefore, players have

an infinite number of mixed strategies available to choose from. In rare cases, it is also

possible for a mixed strategy to be a choice of one of the pure strategies.

Mixed strategy [15] may be much more efficient in comparison to pure strategy when there is

a finite and known or predictable pure strategy to the opponent. This is a disadvantage to the

current player. In the example of Rock-Paper-Scissors, if the pure strategy always chooses

one move (e.g. Paper) every time, then the opponent will be able to predict the move and

can play a move to give them a maximum payoff (e.g. Scissors). However, if the mixed

strategy equally distributes the probabilities between all moves, then the player can choose

a move at random which makes it unpredictable for the opponent about the next move.

Strategy sets are combination of strategies for all players which specifies all possible moves

in a game. This strategy set may be finite in games such as Rock-Paper-Scissors where the

strategy set would be {Rock, Paper, Scissors}. A strategy set may also be infinite if there

are an infinite number of discrete strategies available; for example, the strategy set for an

auction can be infinite as it could be {£10, £20, £30, …}.

- 11 -

3.1.5 Game Representations

As mentioned before, a game is a model. To define a game, it must specify elements such

as the players in the game, the amount of information available to each player at a specific

state, the moves available to each player at a state, and the payoffs at each outcome [16].

Coalitional Form

Most cooperative games are represented in the Coalitional Form (sometimes called the

Characteristic Function Form). As mentioned before, there are no restrictions on the contract

that can occur among players. Also, [17] an assumption is made that there is a transferable

utility which allows side payments to be made between the players under the contract. This

side payment may be used to encourage players to use specific mutually beneficial

strategies. Hence, this encourages the players with similar objectives in the game to form

alliances. In games that possess a transferable utility, the payoffs are not given separately,

but the coalitional form determines the payoffs of each group of players. Formally, the

coalitional form is seen as (N,v) where N is the set of players and v is the characteristic

function of the game; v: 2N-> R is a normal utility.

Extensive Form

Extensive Form is very effective to be used to represent games with time sequencing of

moves such as sequential games. As shown in Figure 3.2, the form is represented as a

decision tree (game tree) where each node represents a state, and each branch represents

a choice of move for a player; the player is specified by the number denoted next to each

node. The numbers specified at the bottom of tree are the payoffs. The root of the tree could

represent the initial state of the game or the current state if the game has already started.

To solve this type of games, backward induction is used which works up the game tree to

determine what a rational player at each node would do and continue to work up until the

root of the tree is reached. This type of form can be used to find an optimal move for a player

giving the player the maximum payoff.

- 12 -

Normal Form

Normal Form, as shown in Figure 3.1 and 3.3, is represented using a matrix which shows

the players, payoffs, and a set of possible moves for each player. This form can be formally

represented by any function that associates a payoff to each player with all possible

combinations of moves. It is assumed that the players play a move at the same time and that

they do not have any knowledge of the moves of the other; hence, it is very effective to be

used for simultaneous games. If the players may have some information about the moves of

other players, then extensive form is used to represent such games.

3.1.6 Solved Games

A Solved game is a game where at any state, the final decision of the game (win, draw, or

lose) can be correctly predicted depending on the move that the player has chosen; in

assumption that both the players are playing perfectly.

Perfect play is an optimal strategy for a player that leads them to gain the maximum payoff

or best outcome in a state regardless of the move played by the opponent. A player who is

using the optimal strategy is said to be playing perfectly. A perfect player in a drawn position

will always have the outcome of the game as a draw or a win, never a loss.

Figure 3.2: Extensive Form [3]

Figure 3.3: Normal Form [3]

- 13 -

Two-player [18, 19] games can be solved on several levels such as ultra-weak, weak,

strong. Ultra-weak solved games determine whether the player will win, draw, or lose the

game from the current state, in the assumption that both players play perfectly. Weak solved

games provide an algorithm, with proof that each move is optimal in an ideal game produced

by the algorithm, for the current player to win or draw the game from the start of the game,

against any probable moves of the opponent. Strong solved games provide an algorithm to

provide perfect moves from any state, regardless of any wrong moves played so far in the

game.

3.1.7 Game Tree

Game Tree is a directed graph where each node represents a state, and each level

represents a player’s move. Game trees are used for games that are represented in the

Extensive Form. Game trees are very important in AI because they allow algorithms to

search the game tree to find the best move. Game trees for games such as Tic-Tac-Toe are

easily searchable, but trees for games such as Chess are too large to search through. For

games, such as these, an algorithm generates a specific number of levels to reduce the

complexity and computation. Figure 4 shows an example of a partial game tree.

In a game of Tic-Tac-Toe [2], there are approximately five legal moves per state on average,

and a total of 9 levels in a game. Therefore, there are there are 59 = 1,953,125 nodes which

is reasonable to compute. In a game of Chess, there are approximately 35 average

branching factor and approximately 100 levels per game. Therefore, there are approximately

35100 = 10154 nodes which are completely infeasible to compute.

3.2 Artificial Intelligence Techniques

3.2.1 Heuristic State Evaluation

Heuristic State Evaluation techniques are usually used to find a method that is not optimal or

perfect but an estimate to a satisfactory solution. In the situation of when an optimal solution

is not possible to be determined due to the lack of time, a heuristic technique is used to find

a solution that is satisfactory. The trade-off measures used to decide whether a heuristic is

required to find a solution to a problem includes Optimality, Completeness, Accuracy and

Precision, and Execution time.

A heuristic function, also called a heuristic, is used to rank each branch at each branching

step to decide which branch to follow; it may approximate the exact solution [20]. Heuristics

- 14 -

are the main part of AI and the computer simulation of thinking since they can be used even

in a situation where there are no algorithms available to find a solution [21].

Within a game, a heuristic may be used to evaluate a state to give an estimated payoff of

that state. A heuristic can be used in such a way to compare each state to find the best next

state that will give the maximum payoff. Each move has a cost and a gain [2], evaluating a

state gives a payoff of playing a specific move from the current state, which produces the

next state that is the resulting state. Typically, a state can be evaluated by calculating how

good the state is for a player and the opponent and subtracting the opponent’s score from

player. In a chess game, this may be by subtracting the value of the white pieces on the

board from the black pieces, if the player is playing white and the opponent is playing black.

A heuristic can be designed for a game by taking into consideration its features and

properties. Each feature can be taken together into categories; for example, in a chess

game, the number of queens of the white and the number of queens of the black can be

combined into a category. The features and properties of each game may vary, however, an

example of these may include the current state, the number of players, position of each

piece in the game, number of moves available, each piece available, etc. Each property can

be assigned a value which is used by the heuristic function to evaluate all the next possible

moves. The more the information given to the function, the more precise the heuristic will be

to the actual result.

State evaluation heuristics [2] often require much less computational speed in comparison to

heuristic search since they only require the information regarding the current state to be able

to compute the heuristic. However, the computation of a state evaluation heuristic may also

be too complex in the case when it is required to compute the expected value for each

feature separately for the player and the opponent. Therefore, the evaluation function uses a

simpler version of a heuristic function, weighted linear function:

𝐸𝑣𝑎𝑙(𝑠) = 𝑤1𝑓1(𝑠) + 𝑤2𝑓2(𝑠) + ⋯ + 𝑤𝑛𝑓𝑛(𝑠)

Each function 𝑓𝑥 where 𝑥 is within 1 to 𝑛, represents a feature or property such as the pieces

in the state, and each weight 𝑤𝑥 where 𝑥 is within 1 to 𝑛, is a parameter that can be altered

as required by the heuristic designer, since this represents the value of the component.

For example, 𝑤1 = 9 with 𝑓1(𝑠) = (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤ℎ𝑖𝑡𝑒 𝑞𝑢𝑒𝑒𝑛𝑠) − (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑙𝑎𝑐𝑘 𝑞𝑢𝑒𝑒𝑛𝑠)

3.2.2 Minimax and Maximin

Minimax is a decision rule used in game theory to minimise the maximum loss. When

working with gains, the decision rule Maximin is used to maximise the minimum gain.

- 15 -

Minimax is often used in zero-sum games to minimise the opponent’s maximum payoff.

Therefore, since in a zero-sum game the gain of the player results in a loss of the opponent,

this results in maximising the player’s minimum payoff. Maximin is frequently used for non-

zero sum games to maximise the player’s minimum payoff.

Both these algorithms were originally used for two-player games to cover all the possible

moves of both players. The players [2] will take alternative turns, and it is assumed that each

player plays to their best ability to maximise the loss in minimax or to minimise the gain in

maximin for the opponent. Each game is represented in Extensive Form, and this is shown

in Figure 3.4 which describes a minimax partial game tree for Tic-Tac-Toe in the perspective

of player X, as it is trying to maximise the payoff for player X. This game tree shows all the

possible moves by both players. Each level in the tree is a ply, and it represents a turn of a

specific player. The branch follows the move that each player chooses. A terminal test is

when there is either no more moves available for any player, resulting in a draw, or when

either player wins the game. The utility function is applied to the state once the game has

terminated to generate either a -1 to represent a loss, 0 to represents a draw or +1 to

represent a win for Player X. The utility values are then carried up recursively where player

O tries to minimise the payoff of player X, and player X tries to maximise its payoff. When

the values reach the root of the tree, the branch with the maximum payoff is selected.

Figure 3.4: A minimax partial game tree for Tic-Tac-Toe [2]

- 16 -

function MINIMAX_DECISION (state) returns an ACTION

 MAX_V ← MAX(MIN_VALUE(state, a ϵ ACTIONS))

 return action in ACTIONS with value MAX_V

function MAX_VALUE(state, game) returns a utility value

 if TERMINAL_TEST(state) then

 return UTILITY(state)

 v ← -∞

 for each a in ACTIONS(state) do

 v ← MAX(v, MIN_VALUE(state, APPLY(state, a)))

 end

 return v

function MIN_VALUE(state, game) returns a utility value

 if TERMINAL_TEST(state) then

 return UTILITY(state)

 v ← ∞

 for each a in ACTIONS(state) do

 v ← MIN(v, MAX_VALUE(state, APPLY(state, a)))

 end

 return v

The Minimax pseudo-code algorithm is as follows:

3.2.3 α-β pruning

Usually, evaluating every node within a game tree using the minimax or the maximin

algorithms can be very expensive. Therefore, α-β pruning is a search algorithm that

decreases the number of nodes that is evaluated using the fact that some branches can be

eliminated from the game tree (pruning). A game tree has a time complexity of O(bm) where

b denotes the average number of branches on each level and m denotes the maximum

depth of the tree. With perfect ordering, α-β pruning can decrease this complexity by up to

O(bm/2) [22].

- 17 -

function ALPHA_BETA_SEARCH(state) returns an ACTION

 v ← MAX_VALUE(state, -∞, ∞)

 return action in ACTIONS(state) with value v

function MAX_VALUE(state, α, β) returns a utility value

 if TERMINAL_TEST(state) then

 return UTILITY(state)

 v ← -∞

 for each a in ACTIONS(state) do

 v ← MAX(v, MIN_VALUE(state, α, β))

 if v ≥ β then

 return v

 α ← MAX(α, v)

 return v

function MIN_VALUE(state, α, β) returns a utility value

 if TERMINAL_TEST(state) then

 return UTILITY(state)

 v ← ∞

 for each a in ACTIONS(state) do

 v ← MIN(v, MAX_VALUE(state, α, β))

 if v ≤ α then

 return v

 β ← MIN(β, v)

 return v

The idea of this algorithm [2, 23] is to do a depth-first search to generate a partial game tree

and then the heuristic state evaluation function is applied to all the leaf nodes of the tree.

The α and the β bounds are then computed on the internal nodes which cut down on

subtrees. The α bound is value for the best alternative for MAX along the path to state. The

β bound is value for the best alternative for MIN along the path to state. The pseudo-code

algorithm for α-β pruning is [23]:

3.2.4 Expectiminimax

In stochastic games, it is not possible to use minimax algorithm because the chance

elements in the game do not guarantee the payoffs that were discovered. This is where

expectiminimax comes in. Expectiminimax is very similar to minimax; however, it takes into

account the chance elements and uses this within the algorithm to maximise the payoff. An

- 18 -

…

if state is a MAX node then

 return the highest EXPECTIMINIMAX-VALUE of ACTIONS(state)

if state is a MIN node then

 return the lowest EXPECTIMINIMAX-VALUE of ACTIONS(state)

if state is a chance node then

 return average of EXPECTIMINIMAX-VALUE of ACTIONS(state)

…

Expectiminimax tree has min and max nodes, and in addition to this, it also has chance

nodes which take an expected value of a random event occurring [24]. The minimax tree

alternates between the max and min nodes, which is same in the expectiminimax tree;

however, it has the addition of chance nodes being interweaved with these nodes. The

pseudo-code algorithm of expectiminimax is very much like minimax. It can be altered by

making a few changes such as [2]:

3.2.5 Cutting off search

As described before, alpha-beta pruning is a method used to decrease the time complexity

of the game. Cutting off search is another method that can be used. It limits the depth of the

tree by a specific amount. Each node is explored only up to the depth specified. In cutting off

search, the utility function is replaced with the heuristic state evaluation function to get an

estimated payoff where this is used to select which branch to follow up on [25].

This type of search is very effective when used for stochastic games which may be using

expectiminimax algorithm. Since stochastic games have chance elements, as the depth of

the game tree increases, the more ambiguous it can become. This is because there are

factors of probability involved. Hence, cutting off the search by limiting the depth of the tree

results in choosing a branch that can most probably prove to be advantageous. Even though

this method is effective with stochastic games, it is also still effective for deterministic games.

Games such as Deep Blue has a depth limit of 12 [25].

3.2.6 Machine learning

Machine learning allows computers to learn from situations, preparing them to act without

someone telling them how to act (by programming them). Machine learning evolved from AI

[26]. These algorithms overcome following the strict program instructions by taking decision

based on data.

- 19 -

Machine learning algorithms can be classified into three categories of learning including

Supervised learning, Unsupervised learning, and Reinforcement learning. Supervised

learning is trained using training data sets. This training data consists of example pairs which

are the input and the output. The supervised learning algorithm analyses this training data to

produce a function which can be used to produce outputs depending on the inputs of the

algorithm.

Unsupervised learning is the opposite of supervised learning where no training data is given.

This algorithm tries to define hidden structures into a classification or a categorisation from

unlabelled input data [27]. There also exists a type of learning that lies in between

supervised and unsupervised learning called semi-supervised learning. Semi-supervised

learning uses unlabelled training data sets where some data are labelled, however, mostly

consists of unlabelled data.

Reinforcement learning is concerned with how the algorithm must act in an environment. It is

informed when the action is wrong; however, the wrong actions are never explicitly

corrected. This results in the algorithm trying all possibilities to find the correct output. To find

a possibility, reinforcement learning uses exploration of new areas and exploitation of the

current knowledge [28]. This makes this learning very general and hence, is often used

within many other disciples including game theory.

3.2.7 Adaptive Game AI

Adaptive Game AI [29] is the adaptation to the behaviour and the patterns of the opponent

by analysing their decision strategies to be able to predict their behaviour within a game.

This ability to predict the next move of the opponent is especially advantageous within a

simultaneous game because the next move of the player can be selected to gain the

maximum payoff. For example, in a Rock-Paper-Scissors game, if the opponent is predicted

to play Rock, the player can play Paper. The AI won’t win all the time, however, by learning

and adapting to the opponent’s decision strategies, the AI can perform better than chance

which increases the probability of the AI player winning the game.

This type of AI can be used to predict the behaviour of the opponent and can be used to

modify the difficulty of the game to match the player’s skill level which makes the game more

interesting for the player.

- 20 -

3.3 Implementation Language

An important decision that must be made before the implementation of the project is the

decision regarding the implementation language that is to be used. Many languages are

good for this task; hence, well-known languages must be compared with each other.

The language that I have chosen for this problem is Python. This is because it is simple,

powerful, and effective. This project will also require an interface that is more advanced than

text interface to meet Objective 3. Python provides a nice and easy to use Graphical User

Interface (GUI) called Tkinter.

Low-level languages such as C/C++ were not chosen for this project because they do not

offer garbage collection. For C/C++, it is required that memory must be managed within the

code and this could be error prone; hence, automatic memory management is important

since the game tree may be large. The disadvantages of C/C++ include error prone, slow to

write, and frequently unreadable; the advantages of Python are easy to write, readable, and

error reduction [30]. These advantages of Python are very important in this project.

Both Python and Java are object orientated, and they both have automatic garbage

collection. However, I felt that Python is better to be used for this project because it is very

concise and easy to write and read.

3.4 Blokus Duo

The game that I have chosen for my project is called Blokus [31] which is a two to four player

game, shown in Figure 3.5. However, for the implementation of this project, I have chosen

the game called Blokus Duo which was chosen for the simplicity of this project. This game is

two player version of Blokus that is played on a 14x14 board which has 196 squares. Each

player begins the game with 21 pieces. The size of the pieces’ range from 1 to 5 tiles in a

piece where each piece has a unique shape, as shown in Figure 3.6. A tile is a square within

a piece, and a piece consists of a total number of tiles that range from 1 to 5. Each player is

distinguished by the colour of their tiles which is unique to each player. Each set of pieces

may be blue or red. A piece can be placed on the board in any orientation by flipping or

rotating the piece, as shown in Figure 3.7. The game objective is to place as many tiles on

the board as possible; therefore, it is considered better to start off with the 5 sized pieces.

The ending condition of the game is that neither player can make a legal move. If one player

out of the two cannot make anymore moves, however, the other player still can, then the

game can continue until both the players are unable to play anymore moves.

- 21 -

3.4.1 Rules

The order of the game is follows: red, blue. A move is legal, if:

1. The first move played by each player covers a corner square on the board. Either the

top-left corner or the bottom-right corner of the board.

Figure 3.6: Pieces in the board game Blokus [1]

Figure 3.5: Showing the Blokus board game. a) shows a game of Blokus. b) shows an

empty board with the pieces of all player

(a) (b)

Figure 3.7: 8 different rotations of a piece in the board game Blokus [4]

- 22 -

2. The new piece placed on the board by the player must be touching a corner of at

least one of the other pieces of the same colour.

3. Pieces of same colour cannot touch along the edges.

4. The new piece being placed does not overlap another piece that is already on the

board.

3.4.2 Scoring

The scoring of the game is given by computing the total number of tiles of the unplaced

pieces of each player. This is done because it’s easier to count these tiles than to count

each tile placed on the board. The player with the lowest calculated score wins because this

means that they have more tiles placed on the board. A player may get a bonus of 15 points

to take away from the overall score if he/she has played all 21 pieces.

3.4.3 Winning Strategies

Here are a few commonly played winning strategies that could be used within the game:

1. At the start of the game, place tiles to move to the middle of the board to be able to

take up as much space on the board as possible later.

2. Place the largest tiles on the board first as it might be harder to place big tiles on the

board later due to less space.

3. Keep one or more means of escape on each side of the area containing the specific

colour.

4. Try and block the opponent by covering their most advanced corners to prevent them

from moving forward.

5. Keep a note of the squares where no other player can play and keep these spaces in

reserve while playing in a more exposed area.

6. Always keep an eye on your remaining pieces and the remaining pieces of your

opponent.

3.4.4 Classification

Game classifications were described in Section 3.1.3. These are the classifications of the

board game Blokus Duo:

• Two-player: This game can be played with two to four people. However, for

simplicity, two player game was chosen.

• Sequential: Each player takes turns to play where each player waits on the other

player to play their move.

- 23 -

• Deterministic: There are no chance elements in this game. Every possible move of a

player is affected only by the previous moves made by the player or the opponent.

• Perfect Information: Each player has full knowledge about the current and the

previous states of board. They also have knowledge about which pieces each player

has left to play.

• Non-Zero Sum: The gain of a player does not affect a loss for the other unless the

game is played in such a way that a corner of the opponent is blocked. Also, it can be

made possible to place all the pieces of both the players on the board if the board

size is increased.

• Non-Cooperative: If the game was cooperative then this defies the purpose of the

game to try and defeat the other player.

3.4.5 Approach

The technique that will be used for this game implementation will be minimax applied to a

heuristic state evaluation at a specific depth limit of the game tree. This will be used by the

AI player to decide which move to play next which will increase the player’s points and also

may decrease the opponent’s possibilities of gaining points. Due to computational limits, a

depth limit will be chosen after testing to find an efficient limit that doesn’t take too much time

and also, gives a good search. Since a depth limit is being used, a heuristic function will also

be used to assess states at the limit of the game tree that will be the input for the minimax

algorithm. The minimax algorithm was chosen because this allows the AI player to look at

the opponent’s best move and tries to find the best and maximum payoff possible by

minimising the maximum loss.

Initially, the approach of the program will be to use a basic approach which uses random

decision-making rules. Random decision making is very easy to implement, which involves

choosing any of all the possible moves. A simple heuristic approach will then be taken to

select a move which uses a greedy decision making rule which may be based on a few

things such as: choosing a move that places a piece to add the maximum number of tiles, or

choosing a move that places a piece to increase the maximum number of open corners.

Later, the approach will be focussed on involving minimax to create the game tree

recursively until the specified depth limit and then apply the heuristic state evaluation

function to the leaves of this partial game tree. Different heuristic state evaluation functions

can be designed and combined to give importance to different features of the game.

Functions can be created to select a move that decreases the corners of the opponent,

- 24 -

increases the corners of the player, or include both; also, can increase the number of tiles on

the board, etc.

The greedy approach and the different heuristic state evaluation functions will all be tested

against each other by creating two AI players where both use different heuristics. This allows

the comparison of these approaches to understanding which strategy or heuristic wins the

most. This test will find the most effective heuristic function and this will be chosen for the AI

player to use to play against human players.

- 25 -

4 Design

This chapter will describe the details of the design stage of the project, which defines the

workflow for the implementation of the project and continues to describe each step required

to meet the objectives of the project. This section will use the research from Chapter 3 and

will form a base for the implementation stage.

4.1 Workflow

It is important that the main workflow of the program be designed before the implementation.

The AI techniques to meet the objectives of the project were researched and described in

the background research conducted. In the background research, it was decided that the AI

technique that is going to be used will be minimax and heuristic state evaluation. The

workflow of the program will include these techniques chosen. It will describe the logic of the

game program.

Player 1 will be playing red coloured pieces, and Player 2 will be playing blue coloured

pieces. It is assumed that Player 1 is a human player and Player 2 is an AI player. The AI

techniques are only used by the AI player to play a move at each turn. Initially, all players

have all the pieces, and the board will have no pieces placed on it. The stopping condition of

the game is when both Player 1 and Player 2 have no more moves to play. If a player has

moves to play and the other doesn’t, the game still goes on. Therefore, there are two

Boolean values, both initialised to False, used to end the game: Player1End and

Player2End; where each of them indicates whether Player 1 has played all their possible

moves and whether Player 2 has played all their possible moves, respectively. As per the

order of the turns, Player 1 will play first. Once Player 1 has made their move or has passed

the move, Player 2, the AI player, will analyse the board to find all the possible moves.

These possible moves will all be analysed using the minimax algorithm recursively, and the

heuristic state evaluation function will be applied to determine the next best move at the

depth limit. If Player 2 cannot find any possible moves, then the Boolean value Player2End

is assigned to True. When Player 1 passes a turn, the Player1End Boolean value is

assigned to True because it is assumed the Player 1 will be playing perfectly. Therefore, if

Player 1 finds any possible moves to place, then they would have played it; hence, it is

assumed by the program that there are no more possible moves that can be made by Player

1. After Player 1 passes a turn, and if Player 2 finds possible moves, then once Player 2 has

played their turn, Player 1 will again get a chance to play their turn, and they can pass the

- 26 -

move again if no moves can be played. Also, after a piece is placed on the board by a

player, the piece is deleted from the player’s list of available pieces.

The workflow of the program is represented in the form of a Unified Modelling Language

(UML):

Initialise the state,

and board. Assign

pieces to each

player.

Player1End = False

Player2End = False

If Player 2 has played,

remove the played

piece from Player 1’s

list of pieces. Player 1

play’s their move.

Remove the played piece

from Player 1’s list of pieces.

At Player 2’s move, all the

next possible moves are

generated.

Use the minimax

algorithm and

heuristic state

evaluation to find

the best next move

and play.

Find winner

Start Game

Valid? Pass? Yes

Player1End = True

No

No

Yes Moves

generated?

Yes

Player1End =

True and

Player2End =

True?

No

Player2End = True

Yes

No

- 27 -

4.2 Game Design

This will be the main function which runs the whole game. As specified in the workflow, the

game stops only when both players cannot place anymore pieces on the board. Therefore,

an infinite loop will be used and two Booleans values to denote whether each player has

finished playing their turns. Once the game has ended, the scoring will be applied to

determine the winner of the game. The design for the implementation of the game will be

explained in detail.

Human Player

When a human player plays the game, he/she must be able to understand from the state

what pieces are available to play, what pieces the opponent has, and what pieces are placed

on the board currently.

The human player must be able to specify the coordinates of where the tile must be put on

the board and also specify the piece and the rotation of the piece. This information will be

retrieved from the player using keyboard inputs. The player will be prompted to enter the

piece and its rotation, the y coordinate and the x coordinate of where to place the piece. If

the chosen piece does not exist in the player’s piece list, or if placing the move at the given

coordinates is invalid, then the error will be made known to the player and the player will be

asked to play again. If the move he/she tried to play is successful, or if the player enters

‘pass’ then the chance will be passed to the next player.

Initialisation of the properties

The properties of the game include the board and the pieces placed on it, player to play the

next move, pieces of Player 1, pieces of Player 2, and the move number.

The board will be initialised with the specified number of squares and will be initialised to be

empty. These squares will be denoted as 0 when it is empty when Player 1 has placed a tile

on it, it will be denoted as 1 and for Player 2 will be denoted as 2. Each square on the board

will have a unique value, and this will be denoted using a y coordinate and an x coordinate in

the form, (y,x). The y coordinate denotes the row on the board, and the x coordinate denotes

the column on the board. Both these coordinates start from 0.

From the background research, it was understood that the state of the game is what is

updated and passed to the minimax functions to apply the algorithm recursively. Therefore,

the state will specify the properties of the game: current player, current board, Player 1’s

- 28 -

pieces, Player 2’s pieces, and the move number. The initial state of the game will be set to

Player 1 to play first, empty board, all pieces assigned to Player 1, all pieces assigned to

Player 2, and the move number to be 0.

Representation and orientation of pieces

A piece can be placed on the board by rotating it, or by flipping (reflecting) and then rotate it

again. An orientation of a piece is the position of the tiles in the piece at a specific rotation of

the piece. A piece can have eight possible orientations. However, some pieces are

symmetrical, hence, there will be duplicate orientations for such pieces. Some symmetrical

pieces do not need to be rotated or flipped, and some do not need to be flipped but must be

rotated. Therefore, these features of a piece will be specified using a Boolean, so there is no

unnecessary computation made. Also, it is important to ensure that there are no duplicates

because this could cause duplicate possible orientations of a piece which may increase

computation time.

Each tile in a piece must be uniquely identifiable, and therefore, the tiles will be defined

using a pair of a y coordinate and an x coordinate in the form (y,x). The coordinates start

from 0; for the y coordinate, as the tiles go down, the y coordinate increments by 1; for the x

coordinate, as the tiles go to the right, the x coordinate increments by 1. Figure 4.1a shows

an example of a 5-tile piece for which the coordinates are: (0,1), (0,2), (1,0), (1,1), (2,1).

Hard-coding the coordinates of all eight orientations of an un-symmetrical piece is not the

best solution. To present these pieces, they will be represented in a matrix form as shown in

Figure 4.1b. The 1 in the matrix represents a tile and 0 represents no tile in the piece. The

coordinates of the piece will be generated by iterating through the matrix of the specific

piece, and when it finds a 1, it stores the coordinates of that position. To compute the

rotations of a piece, iterating through the matrix with different orientation of the matrix gives

the rotations of the piece. To compute the coordinates in the current orientation, the iteration

through the matrix can be done from left-to-right; to compute the three other orientations of

the piece, the iteration through the matrix will be done top-to-bottom, right-to-left, and

bottom-to-top. This gives all four rotations of the piece because the direction of the iteration

is taken to be a row.

To flip the un-symmetrical pieces and find the rotation, it is best to hard-code the reflected

matrix and then calculate the rotations as specified before. Because computation of the

reflected piece is only required for some pieces and the computational time will also be

reduced. This reflection matrix is presented in Figure 4.1c. Only un-symmetrical pieces

- 29 -

require this computation. As specified before, there will be a Boolean value to specify

whether a piece needs to be reflected or not.

Corners and Edges

For the player to place a piece, they must place it to touch a corner of another piece of same

colour. The piece cannot be placed on the edge of another piece of same colour. Therefore,

all the open corners and all the edges must be computed. An open corner is a corner where

a piece can place a tile with no edges of another piece with the same colour around it.

To compute the open corners and the edges of a specific player, each square of the board

must be looped through. If a square is taken on its own, it has four corners: top-left corner,

top-right corner, bottom-left corner, and bottom-right corner. While looping through the

board, these corners will be checked for on the board of each square that is populated by

the player. If a potential open corner is found (the square that is a corner of a piece is

empty), it will be checked whether there is a tile of the same colour on the square above,

below, right, left of this found corner. If there isn’t then this corner will be added onto the list

of all the open corners.

The edges will be found by searching each square in the same loop that is used to find the

corners. While looking through each square on the board, if the square above, below, on the

right, or on the left of the current square, which is populated by a tile by the same player, is

empty, then this current square is added to the list of edges.

Placing the piece

As mentioned before, a piece can have up to eight orientations. Therefore, the inputs of this

function would require the piece, orientation number, the coordinates to place the tile, and

the move number. It uses the move number to confirm whether the move being placed is the

first move of either player because they must place the piece to populate either the top-left

0 1 1

1 1 0

0 1 0

1 1 0

0 1 1

0 1 0

Figure 4.1: a) a 5-tile piece [1] b) the matrix representation of the piece c) the reflection

matrix of the piece

(a) (b) (c)

0 1
0

1

2

- 30 -

or the bottom-right corner square of the board. While placing a piece, it must be checked

that these rules are being met; making it a valid move. Therefore, each tile of the new piece

will be tested to see if it keeps these rules and if it is placed on an open corner, whether any

tiles of the piece are touching any edges, and if it is over placing by placing a tile in a square

that is already populated. The corners and the edges generating function will be used to get

all the open corners and the free edges of the board for the specific player. These details will

be used to check whether it is valid to place the current piece on the board at the given

coordinates.

Displaying the state

The state of the game cannot be displayed as a text interface since it would be hard for the

human player to analyse the board and to understand which squares are free and the pieces

left. Therefore, the state must be displayed on a canvas using squares to represent the

board where each square is coloured to the tile placed on it. The canvas must also display

the pieces available for both the players. Since it is a perfect information game, both the

players may see each other’s pieces to think about the opponent’s possible moves.

Since the player needs to understand the different orientations of a piece, each different

orientation will be displayed on the canvas. They will also be given a specific number to help

the player choose the piece and the orientation they would like to play. As specified before

the specific numbers will be decimal numbers.

The board will also specify the coordinates of each row and the column starting from 0 to the

selected board size. This is so that the player may easily understand the coordinates of the

board to place the piece.

4.3 AI Player Design

The AI player is the computer player which uses AI techniques to play the game. The AI

player will generate the possible moves that can be made from the current state, and these

moves will be analysed by the minimax algorithm using the heuristic state evaluation

function. The best move is then selected by the algorithm and placed on the board.

Finding the possible moves

- 31 -

The possible moves are the moves that can be successfully made in a specific state by

following all the rules of the game. In the list of possible moves, the same piece can be

placed in different parts of the board as there may be more than one open corner. Therefore,

this is a possible move. The possible move function will only be used by the AI player to find

the best next move.

A piece may have more than one orientation, and the board has many corners. A piece can

be placed if it inhibits any of the open corners and is not on the edge of another piece of

same colour. To find a possible move, all the corners and the edges must be computed, and

then all the orientations of all the current pieces of the player must be computed. If this is the

first move of either player, then the list of corners will only contain either the top-left corner of

the board or the bottom-right corner of the board and there won’t be any edges. Using these

it can be checked whether an orientation of a piece can be placed. The algorithm will loop

through each orientation of a piece. For each orientation, it will calculate the corner tiles of

the piece and place it on a corner on the board with the rest of the tiles from the piece being

checked whether it is over placing, being placed within the limits of the board, and if the tile

is not being placed on an edge. Once it has passed these checks, the move is then stored.

The algorithm takes the state as the input which specifies the current player so using this,

the possible moves for the player can be calculated. A possible move will be stored as, the

piece name, orientation number, and the y and x coordinates.

The pseudo-code of the algorithm is described as:

- 32 -

Minimax algorithm

As decided before, the minimax algorithm will be used with a depth limit because the number

of nodes created for the whole game will be too large. The depth limit is the limit given to tell

the algorithm the maximum number of levels that the game tree may search until. Once the

depth limit has been reached and the game tree generated, the heuristic state evaluation

function will be applied to the leaves of the tree. The pseudo-code for the minimax algorithm

is given in Section 3.2.2. A few changes to the algorithm will need to be made to adapt it to

the game. The algorithm will make sure that even if there are no possible moves for the next

player, and there are more levels allowed to be searched as per the depth limit, then the

algorithm will skip the search of next player and continue the search for current player to find

the best move. Figure 4.2 shows an example of when a search is skipped for Player 2. The

dotted arrow represents a skipped search. The depth limit given for this game tree was 3,

function find_moves(state) returns all possible moves

 corners ← corners on the board

 edges ← edges on the board

 pieces ← pieces of the player from state

 possible_moves ← initialise to empty

 for each p in pieces do

 piece_orientations ← all orientations of piece p

 for each a in piece_orientations do

 tile_corners ← all corners of piece a

 for each c in tile_corner do

 for each corner in board open corners do

 place c in corner

 check whether the rest of the tiles

 in the piece are placed validly

 if valid then

 add (y, x, move_name,

 orientation_no) to

 possible_moves

 return possible_moves

- 33 -

and minimax algorithm was initiated to maximise the payoff for Player 1. After Player 1’s

search, Player 2 has no more moves, and because the depth limit allows the search of

Player 1 again, it skips Player 2’s search and searches for Player 1 to maximise it’s payoff.

Figure 4.3 is like Figure 4.2; however, it shows how Player 1 has no more moves to play.

Even though there are more depth limit’s, the search is terminated after two searches. This

is because Player 2 cannot do another search since the number of levels left to search is too

low.

Various heuristic state evaluation functions will be compared and analysed in the testing

phase to find the best heuristic.

MAX (Player 1)

MIN (Player 2)

MAX (Player 1)

No of levels = 3

No of levels = 2

No of levels = 1

No of levels = 0

Figure 4.3: A partial game tree example of when a level is skipped in minimax

algorithm.

Figure 4.2: A partial game tree example of when a level is skipped in minimax

algorithm.

MAX (Player 1)

MIN (Player 2)

MAX (Player 1)

No of levels = 3

No of levels = 2

No of levels = 1

No of levels = 0

- 34 -

5 Implementation

The implementation is the main stage of the project where the research conducted and all

the information collected is applied and developed. This stage is followed by the design

stage where the implementation was designed. It will be based off the pseudo-codes and the

design from the design stage and the background stage. This chapter will explain and

describe how the implementation of the game was done on the design specified in Chapter 4

and how each part was integrated together to create the final program to meet the objectives

of the project.

As discussed and decided in Section 3.3, the programming language that will be used to

implement the program is Python. This chapter will follow the workflow from the design

chapter. The representation of the properties of the game will be discussed first and then,

how the game itself was implemented to allow two human players to play against each other.

Then, it will describe how the functionality for an AI player to play the game was

implemented.

5.1 Game Implementation

As described in the design stage, this function is the main function that runs the whole game.

Two Booleans are initialised to False which indicates whether Player 1 and Player 2 has

finished playing their moves. An infinite loop is done where each player takes turns to play.

The first move is played by Player 1, and if a move was made, then the piece is deleted from

its piece list. If a move was not made and if Player 2 already finished playing its moves, then

it breaks out of the infinite loop. If a move was not made and Player 2 has not finished

playing, then Player 1’s Boolean that indicates whether it has finished playing is assigned to

True. The same logic is applied when it is Player 2’s turn. After the infinite loop is

terminated, the scoring function is applied to calculate the winner of the game.

When the human player (Player 1) enters ‘pass’, the function returns the old board and

hence, the computer assumes that the human player does not have any more moves to

play. However, until the computer player (Player 2) has finished with all its moves, it asks the

human to play at each turn for which the human can enter ‘pass’ every time to miss a turn.

This is the same for the computer player. If it has finished with its moves, the human player

can still play until it has also finished playing all its moves. The implementation of this

- 35 -

algorithm is given in blokus.py in the Appendix. How the functions were developed to

implement the game will be explained further.

Initialisation of the properties

The properties of the game were specified in the Design chapter. These properties define

the state of the game. The full implementation of initialisation of the properties of the game is

given in settings.py in the Appendix.

The initial board is set to be empty by every square on the board is set to 0. As specified in

the design, 0 in a square represents that the square is empty, 1 represents that Player 1 has

a tile placed in the square, and 2 represents that Player 2 has placed a tile in the square.

Variables such as the BOARD_SIZE was initialised to be 14 as that is the typical board size

of the Blokus Duo game. A two-dimensional list of BOARD_SIZE is used to represent the

board. The y coordinate specifies the position of the list for the row and the x coordinate

specifies the position of the square within the board in the column.

As was specified, the state of the board is a 5-tuple where the initial state was given

arguments such as Player 1 to play first, the initial board that was created, the piece list of

Player 1 and 2, and finally the move number is set to 1 as the initial state will have the

details to play the first move of the game.

There are 21 pieces for each player to play. Each piece is given a unique name, and the list

of the names of pieces are assigned to each player’s piece list; shown in Figure 5.1.

Each piece is described using a two-dimensional list which describes each row of the piece.

The tiles are represented as (y,x), so when using a list, the y coordinate of the tile

specifies the row. Each row specifies whether a tile is present or not, denoted using 1 or 0

respectively. The x coordinate specifies the value of the column number which is the position

Figure 5.1: piece_list lists the unique name of each piece. piece_list1

is the piece list for Player 1 and piece_list2 is the piece list for Player 2.

- 36 -

of the tile within the row. Figure 5.2 shows the specification of each piece and how each

piece is described. The matrix called cover is the list of rows to specify the position of the

tiles in the piece. The reflec_cover specifies the reflected position of the tiles. The

Boolean values reflection and rotation specifies whether the piece requires the computation

to find all the reflected orientations of the piece and whether the piece requires the

computation to find all the rotated orientations of the piece, respectively. The size specifies

the number of tiles in the piece.

Orientations of a piece

Once the representation of the properties of the game was implemented, the computation of

the different orientations of a piece could be implemented. The algorithm as specified in the

design will loop through the matrix of the piece from different directions to compute the

rotations a piece. The full implementation of this algorithm is given in library.py in the

Appendix.

The function takes the name of the piece as an input and retrieves the details of the piece

from the piece_spec. The Boolean values are used to check whether the piece requires a

rotation or a reflection. A for loop within a for loop was used to iterate through the two-

dimensional list to find the coordinates of one orientation. In total, 4 iterations were

implemented to compute the orientations by iterating from different directions. If a piece must

be reflected, then this function would be used twice as much, and hence there would be 8

iterations in total. The variety in directions to calculate all 4 orientations of each side of the

piece does not affect the number of times a tile is looped through, which is always once. If

the matrix is a 3 x 3 matrix, then the number of times it visits a position is always 1 and the

number of times it iterates is 9.

Figure 5.2: a snippet of piece_spec which describes a piece

- 37 -

Some pieces that are symmetrical may require rotation but rather than having 4 different

orientations for a face, it may only have 2 and this will create duplicates. To avoid duplicates,

a set was used to store the coordinates of a piece which will only store unique orientations

of a piece.

Displaying the state

As specified in the design chapter, the state of the game is displayed to the players using

Python’s GUI interface called Tkinter. The state of game displays the board and the pieces

available for each player. Figure 5.3 shows how the initial state is displayed within the game.

The size of the canvas was chosen to fit the 14 x 14 board and all the 21 pieces of both

players with its different orientations; CANVAS_WIDTH = 1500, CANVAS_HEIGHT = 800.

The size of each square on the board was chosen to be 25 pixels, and the size of each tile

on a piece was chosen to be 10 pixels. Each square on the board displays a colour of grey

shade if the square has value of 0, red if the square has a value of 1, and blue if the square

has a value of 2. The y coordinates and the x coordinates of the board are displayed on the

left side and the top of the board respectively.

Player 1’s pieces are displayed in red colour, and Player 2’s pieces are displayed in blue

colour. Each piece and its orientations are given a decimal value. The human player will

want to specify which orientation of a piece they want to place. Each orientation of a piece is

given a specific number. For example, for the piece shown in the Figure 4.1a, an orientation

of that piece may be called 1.1. The number before the decimal point represents the piece

number and the number after represents the orientation number. The piece number will go

maximum up to 21, and the orientation number will only go maximum up to 8. While

displaying the pieces, they are displayed one by one on the canvas. When it reaches close

to the canvas window, to avoid the pieces being displayed outside of the canvas window, it

starts to display the pieces on the next line. As each piece is placed on the board, the placed

piece and all its orientations are removed from the player’s pieces displayed on the canvas.

Even when pieces are removed from the list, it is ensured that the decimal number that is

unique to each orientation of every piece, stays the same throughout the game; as shown in

Figure 5.4.

The full implementation of the functions used to display the state of the game is given in

library.py in the Appendix.

- 38 -

Figure 5.3: the initial state display before the game has started

Figure 5.4: the display of the state at the end of a game

- 39 -

Corners and edges

The corners and the edges of the pieces on the board are computed as was described in the

design. The corners and edges of the specified player are computed by looping through

each square on the board. This function takes the board and the player to find the corners

and the edges for and returns a 2-tuple which contains a list of corners and a list of edges.

The full implementation of this algorithm is given in library.py in the Appendix.

While iterating through, at each square, if it contains the tile from the specified player, the

squares on its 4 corners are then checked whether they are empty. If a corner is empty, then

the edges of that corner square are tested to confirm that they do not contain a tile from the

same player. If this test is passed, then this is an open corner. The edges are computed in

the same iteration that is used to find the corners. At each square, if it contains a tile from

the given player, then its edge squares are tested whether they are empty. If they are, then

the edge square is stored because another tile from the same player cannot be placed here.

The corners and the edges are added to a set to avoid duplicates. A corner or an edge is

only added if it is empty because if it is not empty, then a piece cannot be placed there and

hence, do not have to check whether another tile may be placed there. The functions that

use this function already check if a tile is being over placed. Avoiding duplication and the

addition of corners and edges that are not empty decreases computation time.

Placing a piece

This function takes the piece, orientation number, y coordinate, x coordinate, and the state

as the input and returns the board after placing the piece if the piece is placed successfully if

not, the old board is returned which doesn’t have the piece placed on it. As was specified in

the design, when placing a piece, the function confirms that the piece exists in the piece list

of the player that wants to place the piece. If it does, then it gets all the corners and edges

on the board of the specified player and tries to place the piece on the board. It places the

piece on the board by placing each tile individually after checking whether it is violating the

rules of the game. It checks whether the rules 1 and 2 from Section 3.4.1, is kept. This is

implemented using 2 Boolean functions which are then checked at the end of placing the

whole piece if were set to True; if it was, then the new board is returned and if not, the old

board is returned, after printing the error. It also makes sure while placing each tile that it is

not being placed on an edge, if it is, then it returns the old board. If a tile is violating, then it

prints out the appropriate error and returns the old board. If it is a valid move, then it places

the piece on the board and returns the new board. The implementation of this algorithm is

given in library.py in the Appendix.

- 40 -

The function prints out the error so that the human player may understand the error with the

move that was made. The AI player does not require an error message because it is played

by the computer. Also, when the AI player generates moves, it only generates moves that

comply with the rules of the game.

The coordinates will be specified by the player so that the player is specifying where the top

left tile (0,0) of the piece must be placed on the board. The coordinates of where the rest of

the pieces will be placed can be worked out by the algorithm from these coordinates. An

example of how this is done can be shown using Figure 5.5 below. Currently, it is Player 2’s

move to play. If player 2 wants to play piece 21.2 to cover the coordinates (8,10), (9,9),

(9,10), (9,11), (10,10) then the (y, x) coordinate specified by the player for this function will

be (8,9).

Human turn

When it is the turn of the human to play, he/she is prompted by the game for the piece to

play for which he/she would enter the decimal number. It then asks for the y coordinate and

x coordinate separately. These are the only 3 inputs required by the human player to be able

to play a piece. The decimal number entered by the player is then split by the decimal point.

The piece number is used to find the piece name the user wants to place. This piece name

and the orientation number along with the y and x coordinates and the state of the game is

passed to the placing piece algorithm. It then tries to place this move and if successful,

returns the new board. This new board is then returned by the algorithm for the human

Figure 5.5: state of the game after 3rd move

- 41 -

player. If the move is not valid, the placing piece algorithm returns the old board. The

algorithm of the human player then asks the human player to try again so that he/she can

correct their error; this is done by checking whether the board returned by the placing piece

function is same as the old board. If it is, then the player is asked to play again. If not, the

new board is returned with the name of the piece that was placed.

If the human player decides to pass the game, then when asked for the piece to play, he/she

may enter ‘pass’ to pass the move. The function then returns the old board and an empty

string as the name of the placed piece.

The implementation of this algorithm is given in blokus.py in the Appendix.

Scoring

The score of each player is calculated at the end of the game when there are no more

possible moves by both players. Each player’s un-played pieces are looped through to sum

the size of each piece that is specified in the piece specification because each tile is worth 1

point; therefore, the size is the total points gained by that specific piece. If a player has

played all their pieces, the sum value of the piece sizes, which would be 0 in this case, will

be subtracted 15 points. This value is then subtracted from the total points a player can get

by playing all their pieces, which is 89 points. So, when a player has played all their pieces,

they would get a total of 89 + 15 points. If a player has played only a 5 piece, then their total

will only be 5 because the total of the un-played pieces’ size would be 84. The winner and

each player’s scores are then printed. The full implementation of this algorithm is given in

library.py in the Appendix.

5.2 AI Player Implementation

For the AI player to make a move, it uses the minimax technique and the heuristic state

evaluation. To find all the possible moves and the best next move using the minimax, there

are a few steps that must be made beforehand. The minimax technique looks at all the

possible moves that can be made by the player. Therefore, a function was created to

generate all the possible moves of the player from the current state. After this, the minimax

algorithm was implemented which uses the function to generate the possible moves of the

player. The heuristic state evaluation function was also implemented to find the best move.

Few heuristic functions were developed to compare them to each other to find the best

- 42 -

heuristic. This comparison will be explained and discussed within the Testing stage of the

project. All implementations of this algorithm are given in blokus.py in the Appendix.

Possible moves

The possible moves are computed using the un-played pieces, and the corners of the player

on the board. The input to this function is the state of the game. As described in the design,

to find the possible moves of an un-played piece, all the orientations of each piece are

generated, and the corner tiles of each orientation are computed. These corner tiles of a

piece are placed on an open corner on the board and checked whether placing the piece

there complies with the rules of the game given in Section 3.4.1. If it is valid, then the move

is added to the list where the y and x coordinates are the top-left corner tile (0,0) of the

piece. The pseudo-code is provided in the design section.

A possible move is represented in the form: (4, 5, 1, ‘4el’). This specifies the y

coordinate, x coordinate, orientation number and the piece name.

Minimax

The minimax function is implemented from the pseudo code from the background section.

However, as specified in the design section, it was modified to be adapted to the game. The

minimax algorithm takes the state, the player that is trying to maximise their move,

specification of whether a max or a min is required, the number of levels left of the game

tree, and the move to place. The minimax algorithm places the move of the player and

creates a temporary piece list for the player and removes the placed piece from this. If the

current level is the depth specified, then the heuristic state evaluation is done, and the value

is returned. If not, it then creates a new state with the next player to play the move and

increments the move number and assigns the new piece list to it depending on the player.

Then the moves of the next player are found and if the next player does not have any moves

and yet still there are more than 2 levels left that can be searched, then the search of next

player is skipped. When the search is skipped, it means that the current player gets to go

onto its next level and the number of levels left is decremented. It then calculates all the

possible moves of the current player and calls the minimax algorithm for each move which

then goes through it recursively. If a search is not skipped meaning that the next player has

possible moves, then the next player’s moves are looped through, and the minimax

algorithm is called again which will go through each move recursively. This is done until the

specified depth limit at which the heuristic is returned. Details about skipping searches are

further explained in the design section.

- 43 -

Computer Turn

The computer turn is the implementation of the MINIMAX_DECISION algorithm for which the

pseudo-code was given in the background section. It generates all the possible moves of the

AI player and initiates the minimax algorithm for each move. From these moves, the move

with the maximum heuristic is chosen and placed on the board using the function to place

the piece. The move must be a valid move; therefore, this function will not return an error.

The new board that is returned by the placing piece function is then returned; and the placed

piece name is also returned. If there are no moves, then the old board is returned with an

empty string.

- 44 -

6 Testing

It is important that the best winning heuristic is chosen for the AI player of the game.

Therefore, the testing phase was used to compare and determine the best winning strategy.

Two AI players will play against each other where both use different heuristic for each

strategy. These two players will play against each other and the most winning heuristic will

be chosen to be the best heuristic. Both the AI players will be using minimax algorithm;

therefore, it is important to choose a depth limit for the search of best move of each player.

6.1 Depth Limit

The minimax algorithm was executed using various depth limits to choose an efficient depth

limit to use while testing each heuristic. Efficiency was measured using the time taken

overall, and the total number of nodes. The higher the number of nodes, the higher the

memory taken up on the machine. The results are given in Table 1 below. The depth limits

were tested using a 14x14 board where the board was empty. From the results, it seems like

depth 3 may be the best option to choose even though the time taken is rather large.

However, it must also be considered that these tests were executed when there were no

pieces on the board. Therefore, when there are more pieces, which means more corners,

the time and the number of nodes will increase largely because there are more possible

moves to make. When the board is empty, there is only one corner to test for possible

moves. From this also, considering the computational limits of the machine, I concluded to

use a depth limit of 2.

Depth Limit
No. of max

nodes

No. of min

nodes

Total no. of

nodes
Time taken

1 0 58 58 29 ms

2 3364 58 3422 1736 ms

3 3364 577622 580986 1305771 ms

4 - - -
Terminated

after 12 hrs

Table 1: Comparison of time taken and total no. of nodes for different depth limits

- 45 -

6.2 Heuristic

Each test was only executed once because it is pointless to redo a test as the result of a test

will always be the same. When using a heuristic at a specific state, it will try to optimise the

payoff and will end up placing the same piece. The winning heuristic of each comparison will

be compared with other winning heuristics to find the best one from all. The heuristic

comparisons are explained, and the results are shown below.

The heuristic tests were based on Strategy 1 and 4 from Section 3.4.3. The tests were then

evolved from this to find the best solution.

Comparison 1

Player 1: Decrease corners of the opponent.

Player 2: Increase its corners.

The heuristic for Player 1 calculates all the corners of the opponent and the minimax

decision of Player 1 minimises this. Hence, finding the best next move by minimising the

number of corners of opponent.

The heuristic for Player 2 calculates all the corners of itself, and the minimax decision

increases this.

Figure 6.1: State at the end of game after comparison 1

- 46 -

Comparison 2

Player 1: Decrease corners of the opponent and place big tiles first.

Player 2: Increase its corners

The heuristic for Player 1 calculates all the corners of the opponent and the minimax

decision of Player 1 minimises this. The function to find all the possible moves were limited

to find possible moves with the biggest sized pieces available. If it cannot find any moves

with biggest sized pieces, then it finds moves with lower sizes.

The heuristic for Player 2 calculates all the corners of itself, and the minimax decision

increases this.

Comparison 3

Player 1: Decrease corners of the opponent and increase its number of tiles placed

Player 2: Increase its corners

The heuristic for Player 1 calculates all the corners of the opponent and the number of its

squares. The heuristic was as follows: Heuristic = (no. of tiles placed by Player 1 *2) –

(corners of opponent). The minimax decision of Player 1 maximises this. This heuristic gives

priority to increasing its number of tiles placed than decreasing the corners of the opponent.

Figure 6.2: State at the end of game after comparison 2

- 47 -

The heuristic for Player 2 calculates all the corners of itself, and the minimax decision

increases this.

Comparison 4

Player 1: increase its corners and place big tiles first.

Player 2: decrease opponent’s the corners and place big tiles first

The heuristic for Player 1 calculates all the corners of itself, and the minimax decision of

Player 1 maximises this.

The heuristic for Player 2 calculates all the corners of the opponent and the minimax

decision of Player 2 minimises this.

The function to find all the possible moves for both players were limited to find possible

moves with the biggest sized pieces available. If it cannot find any moves with biggest sized

pieces, then it finds moves with lower sizes.

Figure 6.3: State at the end of game after comparison 3

- 48 -

Comparison 5

Player 1: place big tiles first and decrease the number of tiles placed by opponent.

Player 2: place big tiles first

The heuristic for Player 1 calculates all the tiles placed by both players. The heuristic is as

follows: Heuristic = (no. of tiles placed of Player 1) – (no. of tiles placed by opponent *2). The

minimax decision of Player 1 maximises this. This heuristic gives priority to decreasing the

number of tiles placed by the opponent.

The heuristic for Player 2 calculates all the tiles placed Player 2 and the minimax decision

function tries to maximise this.

The function to find all the possible moves for both players were limited to find possible

moves with the biggest sized pieces available. If it cannot find any moves with biggest sized

pieces, then it finds moves with lower sizes.

Figure 6.4: State at the end of game after comparison 4

- 49 -

Comparison 6

Player 1: increase its corners and place big tiles first.

Player 2: decrease the opponent’s corners, increase its corners, and place big tiles first

The heuristic for Player 1 calculates all the corners of itself, and the minimax decision of

Player 1 maximises this.

The heuristic for Player 2 calculates all the corners of the opponent and its corners. The

heuristic is as follows: Heuristic = (no. of corners of Player 2 *2) – (no. of corners of

opponent). The minimax decision of Player 2 maximises this. This heuristic gives priority to

increasing its number of corners.

The function to find all the possible moves for both players were limited to find possible

moves with the biggest sized pieces available. If it cannot find any moves with biggest sized

pieces, then it finds moves with lower sizes.

Figure 6.5: State at the end of game after comparison 5

- 50 -

Comparison 7

Player 1: decrease the opponent’s corners, increase its corners, and place big tiles first

Player 2: increase its corners and place big tiles first.

The heuristic for Player 1 calculates all the corners of the opponent and its corners. The

heuristic is as follows: Heuristic = (no. of corners of Player 1 *2) – (no. of corners of

opponent). The minimax decision of Player 1 maximises this. This heuristic gives priority to

increasing its number of corners.

The heuristic for Player 2 calculates all the corners of itself, and the minimax decision of

Player 2 maximises this.

The function to find all the possible moves for both players were limited to find possible

moves with the biggest sized pieces available. If it cannot find any moves with biggest sized

pieces, then it finds moves with lower sizes.

Figure 6.6: State at the end of game after comparison 6

- 51 -

6.4.1 Results

The results of each comparison are shown below in Table 2. The player that won each game

is coloured in green.

Comparison Player 1 Player 2
Total no. of

nodes
Time (ms) Scores

1

Decrease

corners of

opponent

Increase its

own corners
1,648,437 933,704

Player 1 = 34

Player 2 = 50

2

Place big

tiles first and

decrease

corners of

opponent

Increase its

own corners
783,135 425,638

Player 1 = 54

Player 2 = 41

3

Increase (no.

of tiles

placed * 2)

and

decrease

corners of

Increase its

own corners
1,170,894 1,470,371

Player 1 = 54

Player 2 = 41

Figure 6.7: State at the end of game after comparison 7

- 52 -

opponent

4

Place big

tiles first and

increase

corners

Place big

tiles first and

decrease

corners of

opponent

575,178 1,060,542
Player 1 = 73

Player 2 = 41

5

Place big

tiles first and

decrease

(no. of tiles

placed by

opponent *2)

Place big

tiles first
325,142 542,051

Player 1 = 52

Player 2 = 58

6

Place big

tiles first and

increase no.

of corners

Place big

tiles first and

increase (no.

of corners

*2) and

decrease no.

of corners of

opponent

755,392 1,697,035
Player 1 = 61

Player 2 = 62

7

Place big

tiles first and

increase (no.

of corners

*2) and

decrease no.

of corners of

opponent

Place big

tiles first and

increase no.

of corners

737,601 1,214,382
Player 1 = 61

Player 2 = 58

 Table 2: Results of each comparison

- 53 -

7 Evaluation

The evaluation stage is mainly used to analyse the test results to determine the best

heuristic. This section will consist of the discussion on the test results, and also on the

project objectives to evaluate whether the project has correctly met the objectives.

7.1 Testing results

While testing, each test was evolved from the previous one to try and make it better or to test

whether different conditions will change the results. After the first few tests, it was obvious

that placing the big pieces first was a strategy that helps towards gaining points.

Comparisons 3 and 4 are very similar where the only difference was that one limits the

pieces when finding possible moves and the other does not. Both try to increase number of

tiles placed on the board in a move. From Figure 6.3 and 6.4 it can be seen that the pieces

used are the same but just have some variations on the positions they were placed.

Therefore, due to the speed of the game, limiting the possible moves were chosen to be a

better option from henceforth.

In comparison 6, the scores for both heuristics were very close. Therefore, the heuristics

were swapped for comparison 7 regarding who starts first to see if this made a difference in

the winner. From the results of comparison 7, the same heuristic has won the game with

better results. Therefore, from the results, it concluded that the heuristic ‘Place big tiles first

and increase (no. of corners *2) and decrease no. of corners of opponent’ will be used for

the AI player. This AI player will play the first move of the game as this seems to give the

best results.

7.2 Project Objectives

This section evaluates whether the project objectives specified in chapter 2 has been met.

The list of the objectives and the discussion is as follows:

• Objective 1: Develop a software capable of correctly playing the game of Blokus in

accordance with its rules

During the general testing of the implementation phase, it had been obvious that the

program is correct as per the rules of the game. This belief was further strengthened

during the testing phase of the project when the moves were chosen by the program

rather than a human where there is a higher chance of moves played by the program

- 54 -

that is against the rules coming to light. However, there didn’t seem to be such

things; therefore, this objective has been met.

• Objective 2: Develop a simple rule-based AI algorithm to play the game of Blokus

The implemented program uses AI techniques such as minimax algorithm and

heuristic state evaluation to play the game Blokus. Therefore, this objective has been

met.

• Objective 3: Develop a GUI interface to show the game states

The implemented program displays the state of game using a Python GUI interface

called Tkinter. This is described and shown in Section 5.1. Therefore, this objective

has been met.

• Objective 4: Investigate the use of AI techniques such as Minimax, Heuristic state

evaluation, Machine learning to enable the algorithm to play ‘intelligently’

During the research phase, various AI techniques were investigated including

Minimax, Heuristic state evaluation, and Machine learning; some of which has been

used within the project. They were researched about, and the techniques that

seemed best suitable for the project and for the given timescale of the project were

chosen. Therefore, this objective has been met.

7.3 Project Evaluation

Overall, the project went very well since it has been able to meet the aim to investigate and

implement the use of AI techniques and produce a program that ‘intelligently’ plays Blokus.

Every stage of the project had no issue since any issues that arose were able to be sorted

out with some further research into the matter. However, a challenge faced would be the

computational time of the minimax algorithm and the time it took for a game to finish while

testing, either in the implementation phase or in the testing phase. This led to some

confusion whether the algorithm was correct or not. When it took more time to search for a

move than I expected, I suspected a possible bug. There wasn’t a bug, but it was just the

computation limits of my machine. However, debugging was done to further investigate the

program and to solve any bugs that were found. The results of the investigation were then

added into the testing section of the project and was used to choose a good depth limit. If

there was more time available, I would have been able to do more extensive tests of

different heuristics to possibly find a better solution to the current one found.

- 55 -

Using AI techniques does meet the aim to play Blokus intelligently; however, I would have

preferred to add some machine learning elements into the program to be able to make it

more intelligent. If there was more time available for the project, I am sure this would have

been possible. Also, in the time given, I was able to meet all the objectives and keep to the

project plan; therefore, I can say that the time management of the project was very good.

- 56 -

8 Conclusion

The aim of the project was to investigate and implement AI techniques to play Blokus

‘intelligently’. Initially, a background research was conducted with the aim to give an idea

about the project and to understand the problem and how this could possibly be tackled.

Through this research, the aim was broken down into project objectives to make meeting the

aim an easier task. There were four different stages to the development stage: design,

implementation, testing, and evaluation. The design was based strongly upon the

background research conducted and information gathered. It was used to shape the

implementation stage and create an outline of how to implement the solution to meet the

objective. The implementation stage was where the knowledge upon the project was

applied. The testing and evaluation stage was used to investigate on the best solution to

play the game as ‘intelligently’ as possible. Finally, each of these stages was a step towards

meeting the aim of the project.

8.1 Future Work

There are many future improvements and developments that can be implemented for this

tool. They were not attempted in this project due to time constraints. Therefore, these will be

considered in the future work of this project.

8.1.1 Test more strategies to find a better heuristic

In Section 3.4.3, it specifies a few strategies that will help towards winning the game.

Strategy 2 and 4 were used to explore a good heuristic within this project. Therefore, a

possible improvement for this project would be to implement and test the strategies 1, 3, and

5. This includes implementing the knowledge into the program where the minimax algorithm

it can determine where it the player has placed pieces on the board and from this work out

the next best move.

8.1.2 Adaptive AI

Currently, the AI player only uses its ways and uses its own heuristics to try and predict what

the opponent may play. However, the opponent may not be using the same heuristic as the

player. Therefore, a possible improvement would be to understand how the opponent plays

- 57 -

it’s moves by determining their heuristic and to include this heuristic in the minimax algorithm

when playing as the opponent in a specific level. This will give a better chance of winning.

8.1.3 Add more players

Currently, the game only allows 2 players in the game. The game Blokus can have from 2-4

players in a game. A possible improvement for the program would be to include up to 4

players and also giving the player a choice to include the number of players they want.

Hence, implementing the real game of Blokus.

8.1.4 Include α-β pruning

Currently, the game takes a very long time to finish when two AI players play against each

other. α-β pruning can be included to make the AI player choose a move quicker. This

makes the game more efficient and allows the use of a higher depth limit which further helps

to find the best move.

- 58 -

References

1. Derksen, B. Blokus. 2006 18/12/06 15/08/16]; Available from:
https://en.wikipedia.org/wiki/Blokus.

2. Kask, K. Set 4: Game-Playing. 2016 12/08/17]; Available from:
http://www.ics.uci.edu/~kkask/Fall-2016%20CS271/slides/04-games.pdf.

3. Hotz, H. A Short Introduction to Game Theory. 13/07/06; Available from:
https://www.theorie.physik.uni-
muenchen.de/lsfrey/teaching/archiv/sose_06/softmatter/talks/Heiko_Hotz-
Spieltheorie-Vortrag.pdf.

4. Jahanshahi, A., M.K. Taram, and N. Eskandari. Blokus Duo game on FPGA. in
Computer Architecture and Digital Systems (CADS), 2013 17th CSI International
Symposium on. 2013. IEEE.

5. Schaeffer, J., et al., Checkers is solved. science, 2007. 317(5844): p. 1518-1522.
6. Myerson, R.B., Game theory. 2013: Harvard university press.
7. Game Theory. [cited 2017 02/08/2017]; Available from:

http://www.investopedia.com/terms/g/gametheory.asp.
8. Prisner, E., Game theory: through examples. 2014: Mathematical Association of

America.
9. Luce, R.D. and H. Raiffa, Games and decisions: Introduction and critical survey.

2012: Courier Corporation.
10. Kockesen, L.a.O., E. , An Introduction to Game Theory. 1st Edition ed. 2007.
11. Shoham, Y. and K. Leyton-Brown, Multiagent Systems: Algorithmic, Game-Theoretic,

and Logical Foundations. 2008: Cambridge University Press.
12. Shor, M. Symmetric Game. 12/08/05 [cited 2017 02/08/17]; Available from:

http://www.gametheory.net/dictionary/games/SymmetricGame.html.
13. Plan, A. Symmetric n-player games. 13/03/17; Available from:

https://econ.arizona.edu/sites/econ/files/wp2017-17-08_symmetric_n-player_.pdf.
14. Chandrasekaran, R. Cooperative Game Theory. Available from:

http://www.utdallas.edu/~chandra/documents/6311/coopgames.pdf.
15. Aumann, R.J. and A. Brandenburger, Epistemic conditions for nash equilibrium, in

Readings in Formal Epistemology. 2016, Springer. p. 863-894.
16. Rasmusen, E. and B. Blackwell, Games and information. Cambridge, MA, 1994. 15.
17. Ferguson, T.S. Game Theory. 08/08/17]; Available from:

https://www.math.ucla.edu/~tom/Game_Theory/coal.pdf.
18. Allis, L.V., Searching for solutions in games and artificial intelligence. 1994: Ponsen

& Looijen.
19. Van Den Herik, H.J., J.W. Uiterwijk, and J. Van Rijswijck, Games solved: Now and in

the future. Artificial Intelligence, 2002. 134(1-2): p. 277-311.
20. Pearl, J., Heuristics: intelligent search strategies for computer problem solving. 1984.
21. Apter, M.J., The Computer Simulation of Behaviour. 1970: London: Hutchinson & Co.
22. Zettlemoyer, L. Adversarial Search. CSE 473: Artificial Intelligence Autumn 2011

2011 10/08/17]; Available from:
https://courses.cs.washington.edu/courses/cse473/11au/slides/cse473au11-
adversarial-search.pdf.

23. Alpha Beta Exercises. 12/08/17]; Available from:
http://classes.engr.oregonstate.edu/eecs/spring2012/cs331/lectures/AlphaBetaExerci
ses.2pp.pdf.

24. Russell, S., P. Norvig, and A. Intelligence, A modern approach. Artificial Intelligence.
Prentice-Hall, Egnlewood Cliffs, 1995. 25: p. 27.

25. Mausam. Adversarial Search Chapter 5. 10/08/17]; Available from:
https://courses.cs.washington.edu/courses/csep573/11wi/lectures/05-games.pdf.

http://www.ics.uci.edu/~kkask/Fall-2016%20CS271/slides/04-games.pdf
http://www.theorie.physik.uni-muenchen.de/lsfrey/teaching/archiv/sose_06/softmatter/talks/Heiko_Hotz-Spieltheorie-Vortrag.pdf
http://www.theorie.physik.uni-muenchen.de/lsfrey/teaching/archiv/sose_06/softmatter/talks/Heiko_Hotz-Spieltheorie-Vortrag.pdf
http://www.theorie.physik.uni-muenchen.de/lsfrey/teaching/archiv/sose_06/softmatter/talks/Heiko_Hotz-Spieltheorie-Vortrag.pdf
http://www.investopedia.com/terms/g/gametheory.asp
http://www.gametheory.net/dictionary/games/SymmetricGame.html
http://www.utdallas.edu/~chandra/documents/6311/coopgames.pdf
http://www.math.ucla.edu/~tom/Game_Theory/coal.pdf
http://classes.engr.oregonstate.edu/eecs/spring2012/cs331/lectures/AlphaBetaExercises.2pp.pdf
http://classes.engr.oregonstate.edu/eecs/spring2012/cs331/lectures/AlphaBetaExercises.2pp.pdf

- 59 -

26. Hosch, W.L., Machine Learning.
27. Marsland, S., Machine learning: an algorithmic perspective. 2015: CRC press.
28. Kaelbling, L.P., M.L. Littman, and A.W. Moore, Reinforcement learning: A survey.

Journal of artificial intelligence research, 1996. 4: p. 237-285.
29. Ponsen, M., et al., Knowledge acquisition for adaptive game AI. Science of Computer

Programming, 2007. 67(1): p. 59-75.
30. Radcliffe, T., Python vs. C/C++ in Embedded Systems. 2016.
31. Cai, J.C., et al. From C to Blokus Duo with LegUp high-level synthesis. in Field-

Programmable Technology (FPT), 2013 International Conference on. 2013. IEEE.

- 60 -

Appendix

settings.py

from copy import deepcopy

TOTAL_TILES = 89

BOARD_SIZE = 14

MIN_MAX_LEVELS = 2

CANVAS_WIDTH = 1500

CANVAS_HEIGHT = 800

INFINITY = 1.e400

INTRO = "Each piece placed must be touching a corner (but not on an

edge) of a piece of same colour. Place as many tiles as possible.

Most number of tiles on the board wins."

INTRO2 = "When asked for a move, type the decimal number of piece.

When prompted, enter y coordinate and x coordinates to place the

(0,0) tile of the piece."

piece_list = ['unit', 'pair',

 '3line', '3v',

 '4line', '4el', '4tee', '4sq', '4z',

 '5line', '5el', '5z', '5l', '5u', '5t', '5T',

 '5v', '5w', '5s', '5?', '5cross']

cover, corner and edge squares are listed as (y,x) coords

with (0,0) being the top leftmost cell of the piece.

piece_spec = { 'unit': { 'cover': [[1]],

 'reflection': 'no',

- 61 -

'rotation': 'no',

 'size': 1

 },

 'pair': { 'cover': [[1,1]],

 'reflection': 'no',

 'rotation': 'yes',

 'size': 2

 },

 '3line': { 'cover': [[1,1,1]],

 'reflection': 'no',

 'rotation': 'yes',

 'size': 3

 },

 '3v': { 'cover': [[1,1],[0,1]],

 'reflection': 'no',

 'rotation': 'yes',

 'size': 3

 },

 '4line': { 'cover': [[1,1,1,1]],

 'reflection': 'no',

 'rotation': 'yes',

 'size': 4

 },

 '4el': { 'cover': [[1,1,1],[1,0,0]],

 'reflec_cover': [[1,1,1],[0,0,1]],

 'reflection': 'yes',

 'rotation': 'yes',

 'size': 4

 },

- 62 -

 '4tee': { 'cover': [[1,1,1],[0,1,0]],

 'reflection': 'no',

 'rotation': 'yes',

 'size': 4

 },

 '4sq': { 'cover': [[1,1],[1,1]],

 'reflection': 'no',

 'rotation': 'no',

 'size': 4

 },

 '4z': { 'cover': [[1,1,0],[0,1,1]],

 'reflec_cover': [[0,1,1],[1,1,0]],

 'reflection': 'yes',

 'rotation': 'yes',

 'size': 4

 },

 '5line': { 'cover': [[1,1,1,1,1]],

 'reflection': 'no',

 'rotation': 'yes',

 'size': 5

 },

 '5el': { 'cover': [[1,1,1],[1,1,0]],

 'reflec_cover': [[1,1,1],[0,1,1]],

 'reflection': 'yes',

 'rotation': 'yes',

 'size': 5

 },

 '5z': { 'cover': [[1,1,0,0],[0,1,1,1]],

 'reflec_cover': [[0,0,1,1],[1,1,1,0]],

- 63 -

 'reflection': 'yes',

 'rotation': 'yes',

 'size': 5

 },

 '5l': { 'cover': [[1,1,1,1],[1,0,0,0]],

 'reflec_cover': [[1,1,1,1],[0,0,0,1]],

 'reflection': 'yes',

 'rotation': 'yes',

 'size': 5

 },

 '5u': { 'cover': [[1,0,1],[1,1,1]],

 'reflection': 'no',

 'rotation': 'yes',

 'size': 5

 },

 '5t': { 'cover': [[1,1,1,1],[0,1,0,0]],

 'reflec_cover': [[1,1,1,1],[0,0,1,0]],

 'reflection': 'yes',

 'rotation': 'yes',

 'size': 5

 },

 '5T': { 'cover': [[1,1,1],[0,1,0],[0,1,0]],

 'reflection': 'no',

 'rotation': 'yes',

 'size': 5

 },

 '5v': { 'cover': [[1,0,0],[1,0,0],[1,1,1]],

 'reflection': 'no',

 'rotation': 'yes',

- 64 -

 'size': 5

 },

 '5w': { 'cover': [[1,0,0],[1,1,0],[0,1,1]],

 'reflection': 'no',

 'rotation': 'yes',

 'size': 5

 },

 '5s': { 'cover': [[1,1,0],[0,1,0],[0,1,1]],

 'reflec_cover': [[0,1,1],[0,1,0],[1,1,0]],

 'reflection': 'yes',

 'rotation': 'yes',

 'size': 5

 },

 '5?': { 'cover': [[1,1,0],[0,1,1],[0,1,0]],

 'reflec_cover': [[0,1,1],[1,1,0],[0,1,0]],

 'reflection': 'yes',

 'rotation': 'yes',

 'size': 5

 },

 '5cross': { 'cover': [[0,1,0],[1,1,1],[0,1,0]],

 'reflection': 'no',

 'rotation': 'no',

 'size': 5

 }

 }

initial_board = [[0 for x in range(BOARD_SIZE)]

 for y in range(BOARD_SIZE)]

- 65 -

piece_list1 = deepcopy(piece_list)

piece_list2 = deepcopy(piece_list)

initial_state = (1, initial_board, piece_list1, piece_list2, 1)

- 66 -

library.py

from tkinter import *

from settings import *

def setup():

 global w

 master = Tk()

 w = Canvas(master, width=CANVAS_WIDTH, height=CANVAS_HEIGHT)

 w.pack()

get all the coordinates of the orientations of a piece

def all_orientations(p):

 coord_list = set()

 matrix = piece_spec[p]['cover']

 coord_list = coord_list.union(coordinates_matrix(matrix))

 rotate = piece_spec[p]['rotation']

 if(rotate == 'yes'):

 coord_list = coord_list.union(coordinates_rotate(matrix))

 reflec = piece_spec[p]['reflection']

 if(reflec == 'yes'):

 matrix = piece_spec[p]['reflec_cover']

 coord_list = coord_list.union(coordinates_matrix(matrix))

 coord_list = coord_list.union(coordinates_rotate(matrix))

 return list(coord_list)

- 67 -

get the coordinates from a given matrix

def coordinates_matrix(matrix):

 coord_set = set()

 l = []

 b = 0

 for x in range(len(matrix[0])): # left to right

 a = 0

 for m1 in matrix:

 if m1[x] == 1:

 l.append((a,b))

 a += 1

 b += 1

 tup1 = tuple(l)

 coord_set.add(tup1)

 return coord_set

get the rotation coordinates given a matrix

def coordinates_rotate(matrix):

 coord_set = set()

 l = []

 b = 0

 for x in range(len(matrix)-1,-1,-1): # bottom to up

 a = 0

 for g in matrix[x]:

 if g == 1:

 l.append((a,b))

- 68 -

 a += 1

 b += 1

 tup2 = tuple(l)

 coord_set.add(tup2)

 l = []

 b = 0

 for g in range(len(matrix[0])-1,-1,-1):

 a = 0

 for x in range(len(matrix)-1,-1,-1): # right to left

 if matrix[x][g] == 1:

 l.append((a,b))

 a += 1

 b += 1

 tup3 = tuple(l)

 coord_set.add(tup3)

 l = []

 b = 0

 for x in matrix: # top to bottom

 a = 0

 for g in range(len(x)-1,-1,-1):

 if x[g] == 1:

- 69 -

 l.append((a,b))

 a += 1

 b += 1

 tup4 = tuple(l)

 coord_set.add(tup4)

 return coord_set

place a piece on the board given the orientation position and

coordinates

def place_piece(p, orientation_no, Y, X, state):

 player = state[0]

 board = state[1]

 move_number = state[4]

 if not ((player == 1 and p in state[2]) or (player == 2 and p in

state[3])):

 print("FAIL. PLAYER DOES NOT HAVE THIS PIECE")

 return board

 newboard = deepcopy(board)

 initial = False

 valid = False

 plac = all_orientations(p)

 piece_to_place = plac[int(orientation_no)-1]

 (corners,edges) = get_all_corners_edges(board, player)

- 70 -

 for coord in piece_to_place:

 y = Y+coord[0]

 x = X+coord[1]

 if (newboard[y][x] != 0):

 print((p, orientation_no, board, Y, X, player,

move_number))

 print("FAIL. OVERPLACING")

 return board

 elif (((move_number == 1 or move_number == 2) and # check

whether the first move fills in the tiles on each corner of the grid

 ((y,x) == (0,0) or (y,x) == (BOARD_SIZE -1,

BOARD_SIZE -1))) or move_number > 2):

 initial = True

 # check whether a valid move

 if ((move_number > 2 and (y,x) in corners) or move_number <=

2):

 valid = True

 elif ((y,x) in edges):

 print((p, orientation_no, board, Y, X, player,

move_number))

 print("FAIL. CAN'T PLACE ON EDGE")

 return board

 newboard[y][x] = player

 if (initial and valid):

 return newboard

- 71 -

 else:

 print("FAIL. PIECE NOT PLACED CORRECTLY ON CORNER")

 return board

draw a square cell given the cell size and coordinates

def draw_cell(topleft_x,topleft_y,cell_size,y,x,col):

 w.create_rectangle(topleft_x + (x*cell_size),

 topleft_y + (y*cell_size)+10,

 topleft_x + ((x+1)*cell_size),

 topleft_y + ((y+1)*cell_size)+10,

 fill=col)

 w.update()

display the tiles on the canvas

def display_tiles(tiles, topleft_x, topleft_y, col):

 initial = topleft_x

 n = 1

 e = 1

 for p in piece_list:

 if (p in tiles):

 e = 1

 for piece in all_orientations(p):

 for coord in piece:

draw_cell(topleft_x,topleft_y,10,coord[0],coord[1],col)

 w.create_text(topleft_x + 10,topleft_y+60,

text=str(n)+"."+str(e),font="bold")

 w.update()

- 72 -

 topleft_x += (10 + (len(piece) * 10))

 if topleft_x > CANVAS_WIDTH-230:

 topleft_x = initial

 topleft_y += (20 + (len(piece) * 10))

 e += 1

 n = n + 1

display the board and the pieces of each player

def display_state(state):

 w.delete("all")

 board = state[1]

 for y in range(BOARD_SIZE):

 w.create_text(55 + (y*25),35, text=str(y), font="bold")

 w.create_text(25,67 + (y*25), text=str(y), font="bold")

 w.update()

 for x in range(BOARD_SIZE):

 draw_cell(45,45,25,y,x,'#dddddd' if board[y][x] == 0

else "red" if board[y][x] == 1 else "blue")

 display_tiles(state[2],430,5,'red')

 display_tiles(state[3],30,430,'blue')

def check_orientation_with_corners(board, board_open_corners,

board_edges, orientations, position, piece):

- 73 -

 moves = []

 tilecorners = tile_corners(orientations[position])

 for corner in board_open_corners:

 Y = corner[0]

 X = corner[1]

 for t in tilecorners:

 c = [n for n in orientations[position] if not (n[0] ==

t[0] and n[1] == t[1])] # get all coords of tile except the

corner tuple

 valid = True

 for r in c:

 diffY = Y+(r[0] - t[0])

 diffX = X+(r[1] - t[1])

 # check whether this orientation is a valid move on

the board

 if not (diffY < BOARD_SIZE and diffY > -1 and diffX

> -1 and

 diffX < BOARD_SIZE and board[diffY][diffX]

== 0 and

 (diffY,diffX) not in board_edges):

 valid = False

 break

 # add to the list of possible moves

 if valid:

 move = (Y-t[0],X-t[1],position+1,piece)

 moves.append(move)

 return moves

- 74 -

get all the corner for a specific orientation of a tile

def tile_corners(coords):

 corners = []

 for i in coords:

 y = i[0]

 x = i[1]

 if (((y+1,x) not in coords or (y-1,x) not in coords) and

((y,x-1) not in coords or (y,x+1) not in coords)):

 corners.append(i)

 return corners

get all edges and corners of the board for the specific player

def get_all_corners_edges(board, player):

 corners = set()

 edges = set()

 for y in range(BOARD_SIZE):

 for x in range(BOARD_SIZE):

 if (board[y][x] == player):

 if (y > 0 and board[y-1][x] == 0):

 edges.add((y-1,x)) # top edge

 if (x < BOARD_SIZE-1 and board[y-1][x+1] == 0

and edges_of_corner(y-1,x+1,board,player)): # top right corner

 corners.add((y-1,x+1))

 if (x > 0 and board[y-1][x-1] == 0 and

edges_of_corner(y-1,x-1,board,player)): # top left corner

 corners.add((y-1,x-1))

- 75 -

 if (y < BOARD_SIZE-1 and board[y+1][x] == 0):

 edges.add((y+1,x)) # bottom edge

 if(x < BOARD_SIZE-1 and board[y+1][x+1] == 0 and

edges_of_corner(y+1,x+1,board,player)): # bottom right corner

 corners.add((y+1,x+1))

 if (x > 0 and board[y+1][x-1] == 0 and

edges_of_corner(y+1,x-1,board,player)): # bottom left corner

 corners.add((y+1,x-1))

 if (x > 0 and board[y][x-1] == 0): # left edge

 edges.add((y,x-1))

 if (x < BOARD_SIZE-1 and board[y][x+1] == 0): #

right edge

 edges.add((y,x+1))

 return (list(corners), list(edges))

def edges_of_corner(cy, cx, board, player):

 if(((cy > 0 and board[cy-1][cx] != player) or cy == 0) and # top

 ((cx < BOARD_SIZE-1 and board[cy][cx+1] != player) or cx ==

BOARD_SIZE-1) and # right

 ((cy < BOARD_SIZE-1 and board[cy+1][cx] != player) or cy ==

BOARD_SIZE-1) and # bottom

 ((cx > 0 and board[cy][cx-1] != player) or cx == 0)): #

left

 return True

 return False

def calc_score_pieces(pieces):

- 76 -

 n = 0

 for i in pieces:

 p = piece_spec[i]['size']

 n += p

 return n

def get_sized_pieces(pieces, size_pieces):

 new_pieces = []

 for i in pieces:

 n = piece_spec[i]['size']

 if n == size_pieces:

 new_pieces.append(i)

 return new_pieces

def win(state):

 p1 = calc_score_pieces(state[2])

 p2 = calc_score_pieces(state[3])

 if p1 == 0:

 p1 -= 15

 if p2 == 0:

 p2 -= 15

 if (p1 < p2):

 print ('Player 1 has won the game.')

 elif (p2 < p1):

 print ('Player 2 has won the game.')

- 77 -

 else:

 print ('The game is a tie!')

 print()

 print ('Scores:')

 print('Player 1 = ', TOTAL_TILES - p1)

 print('Player 2 = ', TOTAL_TILES - p2)

- 78 -

blokus.py

from copy import deepcopy

import time

from settings import *

from library import *

maxcalls = 0

mincalls = 0

get all the possible moves that the computer can do, given the

state of the board

def possible_moves(state):

 player = state[0]

 board = state[1]

 move_number = state[4]

 if player == 1:

 player_pieces = state[2]

 else:

 player_pieces = state[3]

 moves = []

 sizes = [5,4,3,2,1]

 # if it's first move of the computer then must place on either

corner of the board

 if(move_number == 1 or move_number == 2):

 if board[0][0] == 0:

 board_open_corners = [(0,0)]

- 79 -

 else:

 board_open_corners = [(BOARD_SIZE-1, BOARD_SIZE-1)]

 board_edges = []

 else:

 (board_open_corners, board_edges) =

get_all_corners_edges(board, player)

 i = 0

 while moves == [] and not i == len(sizes):

 sized_pieces = get_sized_pieces(player_pieces, sizes[i])

 for x in sized_pieces:

 p = all_orientations(x) # find all orientations of the

piece

 for u in range(len(p)):

 moves_each_orientation =

check_orientation_with_corners(board, board_open_corners,

board_edges, p, u, x)

 moves = moves + moves_each_orientation

 i += 1

 return moves

def max_min_value(state, player, max_or_min, no_of_levels, move):

 global maxcalls, mincalls

 if (max_or_min == 'min'):

 mincalls += 1

 else:

 maxcalls += 1

 if (state[0] == 1):

- 80 -

 current_player = 1

 next_player = 2

 player_pieces = state[2]

 other_player_pieces = state[3]

 else:

 current_player = 2

 next_player = 1

 player_pieces = state[3]

 other_player_pieces = state[2]

 new_pieces = deepcopy(player_pieces)

 newboard = place_piece(move[3], move[2], move[0], move[1],

state)

 new_pieces.remove(move[3])

 if no_of_levels-1 == 0:

 return heuristic(newboard, player)

 if (current_player == 1):

 new_state = (next_player, newboard, new_pieces,

other_player_pieces, state[4] + 1)

 else:

 new_state = (next_player, newboard, other_player_pieces,

new_pieces, state[4] + 1)

 if (max_or_min == 'min'):

 v = INFINITY

 else:

 v = -INFINITY

- 81 -

 next_player_moves = possible_moves(new_state)

 # if there are more levels than can be searched for current

player, skip search of next player

 if next_player_moves == [] and no_of_levels > 2:

 if(current_player == 1):

 new_state = (current_player, newboard, new_pieces,

other_player_pieces, state[4] + 2)

 else:

 new_state = (current_player, newboard,

other_player_pieces, new_pieces, state[4] + 2)

 return skip_turn(new_state, player, no_of_levels-1,

max_or_min)

 # analyse each move

 for m in next_player_moves:

 if(max_or_min == 'min'):

 r = max_min_value(new_state, player, 'max',

no_of_levels-1, m)

 v = min(v, r)

 else:

 r = max_min_value(new_state, player, 'min',

no_of_levels-1, m)

 v = max(v, r)

 if next_player_moves == []:

 return heuristic(newboard, player)

 return v

- 82 -

def skip_turn (state, player, no_of_rounds, max_or_min):

 global maxcalls, mincalls

 if (max_or_min == 'min'):

 mincalls += 1

 else:

 maxcalls += 1

 moves = possible_moves(state)

 if moves == []:

 return heuristic(state[1], player)

 if (max_or_min == 'min'):

 v = -INFINITY

 else:

 v = INFINITY

 for m in moves:

 if(max_or_min == 'min'):

 r = max_min_value(state, player, 'min', no_of_rounds-1,

m)

 v = max(v, r)

 else:

 r = max_min_value(state, player, 'max', no_of_rounds-1,

m)

 v = min(v, r)

 return v

def computer_turn(state):

- 83 -

 moves = possible_moves(state)

 if(moves == []):

 return (state[1],'')

 pos = -1

 heu = -INFINITY

 inc = 0

 for m in moves:

 h = max_min_value(state, 1, 'min', MIN_MAX_LEVELS, m) #

place the piece and find heuristic value

 if (h > heu):

 pos = inc

 heu = h

 inc += 1

 move = moves[pos]

 newboard = place_piece(move[3], move[2], move[0], move[1],

state)

 return (newboard, move[3])

find best move using this function

def heuristic(board, player):

 if player == 1:

 other_player = 2

 else:

 other_player = 1

 open_corners = get_all_corners_edges(board, player)[0]

- 84 -

 open_corners_other = get_all_corners_edges(board,

other_player)[0]

 return (len(open_corners)*2) - len(open_corners_other)

implements a human turn of the game

def human_turn(state):

 board = state[1]

 newboard = board

 while (newboard == board): # until their move is valid keep

asking

 print()

 p = input('Your move? ')

 if(p.lower() == 'pass'):

 return (board,'')

 l = p.split('.')

 piece = list(piece_spec)[int(l[0])-1]

 y = int(input('Y coordinate '))

 x = int(input('X coordinate '))

 try:

 newboard = place_piece(piece,l[1],y,x,state)

 except IndexError:

 print('PLEASE TRY AGAIN')

 return (newboard, piece)

PLAY GAME

def game(state):

- 85 -

 print(INTRO)

 print()

 print(INTRO2)

 print()

 print("GAME START")

 move_number = state[4]

 player = 1

 finish1 = False

 finish2 = False

 while True:

 display_state(state)

 board = state[1]

 print('\nPlayer to move: ', state[0], "\n")

 if(move_number%2 == 0): # Player 2

 (newboard, piece) = human_turn(state)

 if(newboard == board and finish1):

 break

 elif(newboard == board):

 finish2 = True

 else:

 state[3].remove(piece)

 player = 1

 else: # Player 1

 (newboard, piece) = computer_turn(state)

 if(newboard == board and finish2):

 break

- 86 -

 elif(newboard == board):

 finish1 = True

 else:

 state[2].remove(piece)

 player = 2

 move_number += 1

 new_state = (player, newboard, state[2], state[3],

move_number)

 state = new_state

 win(state)

def main():

 setup()

 game(initial_state)

main()

