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Abstract 

The project investigates the development of a high-quality artificial player that can defeat 

human players at the board game Blokus. Various artificial intelligence techniques have 

been investigated, and the minimax algorithm and heuristic state evaluation were chosen to 

implement the artificial player. 
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1 Introduction 

In the early days of Artificial Intelligence (AI) [5] in game playing, the easiest path to 

achieving high performance was believed to be imitating the human approach. This 

approach was difficult due to problems such as apprehending and encoding human 

knowledge. Human strategies are not essentially the best computational strategy. Hence, a 

search-intensive approach came about which produced high-quality performance; a large 

influence in the field of AI in game playing. Since then, various search techniques were 

developed and applied to problems such as optimisation, planning, and bioinformatics. 

There has been numerous research conducted on AI programs that play adversarial games 

using search-intensive AI techniques. Deterministic [5] board games have been researched 

deeply, and very efficient implementations of AI players in games have been implemented 

for games such as Chess and Checkers. AI players in these perfect information games have 

been developed to such high-quality using search-intensive techniques, that it has been able 

to defeat the best human players in the world. However, many games are yet to be studied 

to implement an AI player that can defeat humans. Therefore, there is a need to investigate 

on more board games to find a solution that can effectively beat human players. Different 

games require different aspects of intelligence. 

In this project, the board game called Blokus has been chosen for study. Various AI 

techniques can be applied for the program to play effectively against humans. However, 

after some research, it has been decided that AI techniques including minimax algorithm and 

heuristic state evaluation will be used to develop the AI player of the board game. 

 

1.1 Dissertation Outline 

Chapter 1 – Introduction sets the scene as well as introduces and motivates the project. 

Chapter 2 – Aim and Objectives state the aim and objectives of the project. The project 

plan is also discussed with a timescale provided. 

Chapter 3 – Background describes the project area in detail and explains decisions taken 

within the project and why. 

Chapter 4 – Design discusses the plan and workflow of the implementation that was carried 

out. 
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Chapter 5 – Implementation presents how the program was developed and why certain 

decisions within the task were made.  

Chapter 6 – Testing is a description of the tests carried out and how it was done. 

Chapter 7 – Evaluation analyses the test results and provides a discussion on whether the 

project objectives were met and analyses the project itself by discussing what went well and 

what could have improved. 

Chapter 8 – Conclusion discusses the project also, generalises and states possible future 

work for the project. 
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2 Aim and objectives 

The aim and objectives will be used within the project as checklists to make sure that the 

project is going the right way. The objectives were decided after some amount of 

background research was conducted. 

2.1 Aim 

To investigate and implement the use of AI techniques to produce a program that can 

‘intelligently’ play the game Blokus. 

2.2 Objectives 

1. Develop a software capable of correctly playing the game of Blokus per its rules. 

2. Develop a simple rule-based AI algorithm to play the game of Blokus. 

3. Develop a GUI interface to show the game states. 

4. Investigate the use of AI techniques such as Minimax, Heuristic state evaluation, 

Machine learning to enable the algorithm to play ‘intelligently’. 

2.3 Project Plan 

The chart shown in Figure 2.1 describes how time will be split to meet the aim and 

objectives. The schedule for the project starts from the beginning of March up to the end of 

August. March has mainly been used to think about the implementation of the board game 

and to do some background research on the topic to understand the context of the project 

properly. April was spent on doing the deliverables for this module while also thinking about 

how the implementation of the core game will be made. May to start of June has been left 

blank due to exams and revision as this is also quite important. Once exams finish at the 

start of June, the design and the implementation stage of the project will begin. The testing 

stage will be in mid-August which is also near the end of time for the implementation of the 

project. The results will be gathered and analysed and also the bugs found will be fixed, and 

the program will then be re-tested. The write up of the report will be a continuing process, 

and this will be written while the design and the implementation stage is being carried on. As 

per the project plan, it is the aim to finish the project by the end of August to be able to error 

check, format and submit the report by the start of September. 
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The methodology chosen for this project is an iterative waterfall model. This model was 

selected to meet each objective one by one by iterating through the design and 

implementation stage depending on whether there is enough time left on each objective. I 

have left extra time for each task than required if I come across any unexpected problem. If I 

do not come across any problem, I should have enough time to implement the code to allow 

a human to play against the program. 

There will be weekly meetings arranged with my supervisor every week to ensure that I am 

going on the right track with my project and solving any issues or doubts that I may have 

regarding the project. 

 

 

Task Name Start Finish 
Duration 

Mar Apr May Jun Jul Aug  

Background 01/03/17 30/04/17  

Design 05/06/17 05/08/17  

Implementation 10/06/17 15/08/17  

Testing 
13/08/17 18/08/17  

Write up 15/07/16 30/08/17  

 

 
Figure 2.1: Project Plan 
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3 Background 

Background research of a project is necessary to gain an understanding of the project itself 

and information on how to carry forward the project to meet the aim. There may already be 

various research and projects conducted that are related to this project. This knowledge can 

be used to aid and implement within my project. Therefore, background research provides 

an excellent base and allows decisions to be made on what to do regarding the project. 

3.1 Game Theory 

Modern game theory [6] began with the work of Zermelo in 1913, Borel in 1921, von 

Neumann in 1928 and the seminal book of von Neumann and Morgenstern in 1944. Game 

theory is the study of models of conflict and cooperation between intelligent decision makers 

within a competitive situation. It provides general techniques to analyse the situation. 

Optimal decisions are made by two or more individuals strategically where every decision 

made influences the welfare of every individual in the situation. This theory is used within 

several areas including psychology, evolutionary biology, economics, and business. 

 

3.1.1 Game 

Game theory does not just apply to recreational games but the term “game” refers to a 

situation in which individuals or independent actors share formal rules and consequences 

[7]. To be able to understand and investigate different classifications of games, and game 

strategies, it is important to know the basics of a game. The components of a game consist 

of [8]: 

• Rules: A game has strict rules which must be followed as this lays down the 

boundaries of what is allowed and what isn’t. These boundaries allow the game to be 

analysed to have a set of possible moves which may be already known in advance. 

• Outcomes: Each game can have various possible outcomes. Each outcome is a 

value of one or more decisions made. 

• Payoffs: Each outcome produces payoffs for the players. Every player wants to win 

the game. 

• Uncertainty of the Outcome: The outcome of a game is unpredictable because if it 

is a one player game, then it will have some chance element and if it is two or more 

player game, a player cannot know in advance the move of another player; causing 

uncertainty. 
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• Decision-making: A decision must be made in a game to continue the game 

forward. These decisions allow the ability to analyse the game using game theory. 

• No cheating: Cheating is when the game is not played as per the rules. Game 

theory always follows the rules. 

 

 

3.1.2 Terminology in a game 

Game: Described by a complete set of rules 

Play: Instance of a game 

State: A specific arrangement within the game using the existing components 

Move: A decision made at a state 

Strategy: A plan to aid the player to choose a move at every possible state 

Rational behaviour: Each player has different behaviour and will try to optimise their payoffs 

while being aware that the other players are trying to optimise their payoffs. 

 

3.1.3 Game classifications 

 

One, Two, or N-player 

Games that have a finite number of players are referred to as an n-player game [9]. The 

number of players in a game effect the strategy of each player to win the game; the higher 

the number of players, the higher the difficulty in the assessment of the next possible move 

chosen by each player [6]. This difficulty is also influenced by the frequency of the decisions 

made by each player. In one player games, such as roulette, it has uncertain elements and 

is not influenced by any players. There are no decisions made in games such as these since 

the number is usually chosen randomly by the player; therefore, it is not possible to create a 

winning strategy for such games. In one-player games that do not have uncertain elements, 

the winning strategy will be straightforward. One-player games are usually not considered 

game theoretical. 

In two or more player games, each player will try to maximise it’s expected payoff. This can 

be either done by only increasing one’s payoff, by decreasing the other player’s payoff, or by 

doing both in a move (further explained in Section 3.1.4). When a player chooses a move, 

this is influenced by what move the next player may choose next. 
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An example of a two-player game [6]: For Player 1 to select a move in a play, Player 1 will 

need to assess each of Player 2’s possible choices. To do this, Player 1 must be in the 

shoes of Player 2. At this moment, Player 2 will be trying to solve its problem by considering 

all the possible moves of Player 1. Here, Player 2 may be putting itself into the shoes of 

Player 1. So, the solution to solving each player’s problem depends on the solution to the 

other player’s problem. Therefore, to maximise the payoff of the current player, each move 

of both player’s must be analysed together, like a system of equations. 

 

Simultaneous or Sequential 

In a simultaneous game, each player has one move each play and every player may make a 

move concurrently in a play; e.g. Rock-Paper-Scissors. If the players do not move 

concurrently, then the players playing after a player will not have knowledge of the earlier 

moves made by the player which effectually makes the game simultaneous. 

In a sequential game, only one player moves in a play. In such games, it is possible for a 

player to move several times in a play; e.g. Monopoly. Unlike simultaneous games, a player 

will have some knowledge about all the previous moves made by the other players. This 

knowledge may not be perfect information but can be some or minimal amount of 

knowledge. 

A simultaneous game and a sequential game are both represented differently within a game. 

Simultaneous games are denoted by payoff matrices, and sequential games are denoted by 

game trees. The representations are further discussed in detail below 

There also exist games that are not simultaneous or sequential [8]. 

 

Deterministic or Stochastic 

At a specific state of the game, when a specific move is played, the resulting state will 

always be the same regardless of how many times the same move is played in the same 

state; this is a deterministic game. There are no other influences on the game, and therefore, 

the resulting state cannot be changed. In a deterministic game, a state can be recreated 

from the same order of moves that were played. 

A game is stochastic when there is some element of randomness. Some one player games 

are stochastic because there is a stand-in player who makes random moves. This player is 

not considered as a second player but is there to provide the element of randomness. 

Element of randomness means when there are moves made due to “chance of nature”; this 

includes the rolling of a dice, shuffling of cards, etc. In stochastic games, when a specific 
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move is played at a specific state the resulting state may change each time it is repeated; 

causing uncertainty. In the existence of uncertainty, payoffs are calculated by estimation 

using the estimated average of the probabilities of the next possible states [10].  

 

Perfect or Imperfect Information 

Perfect information is when a player has full knowledge about the current state. In perfect 

information games, each player has full knowledge of the previous moves made by every 

player. The player can know everything about the current state by knowing the initial state 

and the previous moves made by each player. This makes every player fully aware of the 

current state which also involves the knowledge of the pieces/cards each player has left, the 

possible moves that can be made, the payoffs of each possible move at a state, etc. Perfect 

information is not the same as complete information where each player knows the strategies 

and payoffs that are available to the other players. Instead, perfect information allows every 

player to have the same amount of knowledge as each other [11]. Examples include chess, 

tic-tac-toe, checkers, etc. 

Imperfect Information is the opposite of perfect information where the player can have no 

knowledge or minimal knowledge about a specific state. Simultaneous games are an 

example of such games where a player may not have any knowledge about other player’s 

previous moves or pieces/cards they have left either at the start of the game or through the 

entire game. Examples include UNO, Poker, Scrabble, etc. 

 

Zero Sum or Non-Zero Sum 

Zero sum games [8] are when players cannot modify the resources within the game by 

adding or taking away. In this case, the total payoffs in the game for all the players, add to 

zero. In such games, a gain for a player is an equal amount of loss for another player. A 

good example of such a game is chess where the gain of a player is by attacking and 

capturing a piece of another player which in turn is a loss for the other player. In a zero-sum 

game, a win can be defined as +1, a loss can be defined as -1, and a draw can be defined 

as 0. Such games are called strictly competitive games. 

Non-zero sum games are where all the players can gain together and lose together. So, the 

total payoffs in a game for all the players can add up to be less than or higher than zero. A 

gain to one player does not necessarily result in the loss to another player. Games that can 

have more than one winner naturally comes under this type of games. 
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Symmetric or Asymmetric 

A symmetric game [12] is when a resulting game for a specific player does not change 

depending on the identity of the player. Even if the identity of the player changes, the 

resulting payoff to the strategies of each player stays the same. Two player games are 

usually symmetric, and this is if both the players use the same strategy space and if they 

swap the strategies then they swap the payoffs [13]. Figure 3.1a shows an example of a 

symmetric game which lists the payoffs for Player 1 and Player 2; a player’s payoff can be 

expressed as a transpose of the other player’s payoff [12]. Examples of such games include 

prisoner’s dilemma, chicken, and battle of the sexes.  

Asymmetric games are the opposite of symmetric games where the identity of the player 

affects the resulting game. Such games usually do not have same strategies used by every 

player. However, it is still possible to use same strategies and for the game to still be 

asymmetric; Figure 3.1b shows an example of an asymmetric game. 

 

 

 

 

 

 

 

 

 

Cooperative or Non-Cooperative 

If a game [6] has players who can form a commitment or a contract that is externally 

enforced, this is called a cooperative game. The competition is between groups of players 

rather than between each player. The coalition of groups of players is due to external 

enforcement. If there is a contract or a negotiation made between two players, then other 

players can also contribute to this. Cooperative games [14] are analysed by predicting which 

coalitions will form, the combined moves that the groups make, and the consequential 

summed payoffs. Cooperative games have three or more players because the objective is to 

win the game, so in a two-player game it would defy the purpose to play the game if a player 

1, 1 0, 3 

3, 0 4, 4 

A 

B 

B A 

Player 2 

Player 1 

1, 2 0, 0 

0, 0 1, 2 

A 

B 

B A 

Player 2 

Player 1 

Figure 3.1: (a) a symmetric game       (b) an asymmetric game 

(a) (b) 
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is aiding another player in winning the game. However, there are two player cooperative 

games where the players play together to win against the game. 

Non-cooperative games are where players may not form a cooperation or an alliance with 

each other. If they do form a commitment, it is a self-enforced agreement.  

Cooperative games only provide high-level approach which describes the structure, 

strategies and the payoffs of coalitions. However, non-cooperative games look at these as 

well as the result of bargaining procedures on payoffs with each alliance. Therefore, 

cooperative games are analysed through the approach of non-cooperative games given the 

adequate assumptions to cover all the possible strategies that are available to all the players 

due to the external enforcement of coalition between players. 

 

3.1.4 Game Strategies 

There are two main types of strategies: pure and mixed strategy. A pure strategy specifies a 

complete description of how a player will play the game. In each state, the player will select 

the move to play using the description to determine the move. The strategy set of a player is 

the combination of the pure strategies available to that player.  

A mixed strategy [10, 15] involves randomisation, using positive probabilities that summate 

to 1, to determine the player’s move to play. Probability is given to a minimum of two moves 

in distinct pure strategies. Players can then randomly choose from one of the pure strategies 

that were given a specific probability. Probabilities are continuous; therefore, players have 

an infinite number of mixed strategies available to choose from. In rare cases, it is also 

possible for a mixed strategy to be a choice of one of the pure strategies. 

Mixed strategy [15] may be much more efficient in comparison to pure strategy when there is 

a finite and known or predictable pure strategy to the opponent. This is a disadvantage to the 

current player. In the example of Rock-Paper-Scissors, if the pure strategy always chooses 

one move (e.g. Paper) every time, then the opponent will be able to predict the move and 

can play a move to give them a maximum payoff (e.g. Scissors). However, if the mixed 

strategy equally distributes the probabilities between all moves, then the player can choose 

a move at random which makes it unpredictable for the opponent about the next move. 

Strategy sets are combination of strategies for all players which specifies all possible moves 

in a game. This strategy set may be finite in games such as Rock-Paper-Scissors where the 

strategy set would be {Rock, Paper, Scissors}.  A strategy set may also be infinite if there 

are an infinite number of discrete strategies available; for example, the strategy set for an 

auction can be infinite as it could be {£10, £20, £30, …}. 
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3.1.5 Game Representations 

As mentioned before, a game is a model. To define a game, it must specify elements such 

as the players in the game, the amount of information available to each player at a specific 

state, the moves available to each player at a state, and the payoffs at each outcome [16].  

 

Coalitional Form 

Most cooperative games are represented in the Coalitional Form (sometimes called the 

Characteristic Function Form). As mentioned before, there are no restrictions on the contract 

that can occur among players. Also, [17] an assumption is made that there is a transferable 

utility which allows side payments to be made between the players under the contract. This 

side payment may be used to encourage players to use specific mutually beneficial 

strategies. Hence, this encourages the players with similar objectives in the game to form 

alliances. In games that possess a transferable utility, the payoffs are not given separately, 

but the coalitional form determines the payoffs of each group of players. Formally, the 

coalitional form is seen as (N,v) where N is the set of players and v is the characteristic 

function of the game; v: 2N-> R is a normal utility. 

 

Extensive Form 

Extensive Form is very effective to be used to represent games with time sequencing of 

moves such as sequential games. As shown in Figure 3.2, the form is represented as a 

decision tree (game tree) where each node represents a state, and each branch represents 

a choice of move for a player; the player is specified by the number denoted next to each 

node. The numbers specified at the bottom of tree are the payoffs. The root of the tree could 

represent the initial state of the game or the current state if the game has already started. 

To solve this type of games, backward induction is used which works up the game tree to 

determine what a rational player at each node would do and continue to work up until the 

root of the tree is reached. This type of form can be used to find an optimal move for a player 

giving the player the maximum payoff. 

 

 

 

 

 



- 12 - 

 

 

 

 

 

 

 

 

 

 

Normal Form 

Normal Form, as shown in Figure 3.1 and 3.3, is represented using a matrix which shows 

the players, payoffs, and a set of possible moves for each player. This form can be formally 

represented by any function that associates a payoff to each player with all possible 

combinations of moves. It is assumed that the players play a move at the same time and that 

they do not have any knowledge of the moves of the other; hence, it is very effective to be 

used for simultaneous games. If the players may have some information about the moves of 

other players, then extensive form is used to represent such games. 

 

 

 

 

 

 

3.1.6 Solved Games 

A Solved game is a game where at any state, the final decision of the game (win, draw, or 

lose) can be correctly predicted depending on the move that the player has chosen; in 

assumption that both the players are playing perfectly. 

Perfect play is an optimal strategy for a player that leads them to gain the maximum payoff 

or best outcome in a state regardless of the move played by the opponent. A player who is 

using the optimal strategy is said to be playing perfectly. A perfect player in a drawn position 

will always have the outcome of the game as a draw or a win, never a loss. 

Figure 3.2: Extensive Form [3] 

Figure 3.3: Normal Form [3] 
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Two-player [18, 19] games can be solved on several levels such as ultra-weak, weak, 

strong. Ultra-weak solved games determine whether the player will win, draw, or lose the 

game from the current state, in the assumption that both players play perfectly. Weak solved 

games provide an algorithm, with proof that each move is optimal in an ideal game produced 

by the algorithm, for the current player to win or draw the game from the start of the game, 

against any probable moves of the opponent. Strong solved games provide an algorithm to 

provide perfect moves from any state, regardless of any wrong moves played so far in the 

game. 

 

3.1.7 Game Tree 

Game Tree is a directed graph where each node represents a state, and each level 

represents a player’s move. Game trees are used for games that are represented in the 

Extensive Form. Game trees are very important in AI because they allow algorithms to 

search the game tree to find the best move. Game trees for games such as Tic-Tac-Toe are 

easily searchable, but trees for games such as Chess are too large to search through. For 

games, such as these, an algorithm generates a specific number of levels to reduce the 

complexity and computation. Figure 4 shows an example of a partial game tree. 

In a game of Tic-Tac-Toe [2], there are approximately five legal moves per state on average, 

and a total of 9 levels in a game. Therefore, there are there are 59 = 1,953,125 nodes which 

is reasonable to compute. In a game of Chess, there are approximately 35 average 

branching factor and approximately 100 levels per game. Therefore, there are approximately 

35100 = 10154 nodes which are completely infeasible to compute. 

 

3.2 Artificial Intelligence Techniques 

3.2.1 Heuristic State Evaluation 

Heuristic State Evaluation techniques are usually used to find a method that is not optimal or 

perfect but an estimate to a satisfactory solution. In the situation of when an optimal solution 

is not possible to be determined due to the lack of time, a heuristic technique is used to find 

a solution that is satisfactory. The trade-off measures used to decide whether a heuristic is 

required to find a solution to a problem includes Optimality, Completeness, Accuracy and 

Precision, and Execution time.  

A heuristic function, also called a heuristic, is used to rank each branch at each branching 

step to decide which branch to follow; it may approximate the exact solution [20]. Heuristics 
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are the main part of AI and the computer simulation of thinking since they can be used even 

in a situation where there are no algorithms available to find a solution [21]. 

Within a game, a heuristic may be used to evaluate a state to give an estimated payoff of 

that state. A heuristic can be used in such a way to compare each state to find the best next 

state that will give the maximum payoff. Each move has a cost and a gain [2], evaluating a 

state gives a payoff of playing a specific move from the current state, which produces the 

next state that is the resulting state. Typically, a state can be evaluated by calculating how 

good the state is for a player and the opponent and subtracting the opponent’s score from 

player. In a chess game, this may be by subtracting the value of the white pieces on the 

board from the black pieces, if the player is playing white and the opponent is playing black. 

A heuristic can be designed for a game by taking into consideration its features and 

properties. Each feature can be taken together into categories; for example, in a chess 

game, the number of queens of the white and the number of queens of the black can be 

combined into a category. The features and properties of each game may vary, however, an 

example of these may include the current state, the number of players, position of each 

piece in the game, number of moves available, each piece available, etc. Each property can 

be assigned a value which is used by the heuristic function to evaluate all the next possible 

moves. The more the information given to the function, the more precise the heuristic will be 

to the actual result. 

State evaluation heuristics [2] often require much less computational speed in comparison to 

heuristic search since they only require the information regarding the current state to be able 

to compute the heuristic. However, the computation of a state evaluation heuristic may also 

be too complex in the case when it is required to compute the expected value for each 

feature separately for the player and the opponent. Therefore, the evaluation function uses a 

simpler version of a heuristic function, weighted linear function: 

𝐸𝑣𝑎𝑙(𝑠) = 𝑤1𝑓1(𝑠) +  𝑤2𝑓2(𝑠) + ⋯ +  𝑤𝑛𝑓𝑛(𝑠) 

Each function 𝑓𝑥 where 𝑥 is within 1 to 𝑛, represents a feature or property such as the pieces 

in the state, and each weight 𝑤𝑥 where 𝑥 is within 1 to 𝑛, is a parameter that can be altered 

as required by the heuristic designer, since this represents the value of the component. 

For example, 𝑤1 = 9 with 𝑓1(𝑠) = (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤ℎ𝑖𝑡𝑒 𝑞𝑢𝑒𝑒𝑛𝑠) − (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑙𝑎𝑐𝑘 𝑞𝑢𝑒𝑒𝑛𝑠) 

 

3.2.2 Minimax and Maximin 

Minimax is a decision rule used in game theory to minimise the maximum loss. When 

working with gains, the decision rule Maximin is used to maximise the minimum gain. 
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Minimax is often used in zero-sum games to minimise the opponent’s maximum payoff. 

Therefore, since in a zero-sum game the gain of the player results in a loss of the opponent, 

this results in maximising the player’s minimum payoff. Maximin is frequently used for non-

zero sum games to maximise the player’s minimum payoff. 

Both these algorithms were originally used for two-player games to cover all the possible 

moves of both players. The players [2] will take alternative turns, and it is assumed that each 

player plays to their best ability to maximise the loss in minimax or to minimise the gain in 

maximin for the opponent. Each game is represented in Extensive Form, and this is shown 

in Figure 3.4 which describes a minimax partial game tree for Tic-Tac-Toe in the perspective 

of player X, as it is trying to maximise the payoff for player X. This game tree shows all the 

possible moves by both players. Each level in the tree is a ply, and it represents a turn of a 

specific player. The branch follows the move that each player chooses. A terminal test is 

when there is either no more moves available for any player, resulting in a draw, or when 

either player wins the game. The utility function is applied to the state once the game has 

terminated to generate either a -1 to represent a loss, 0 to represents a draw or +1 to 

represent a win for Player X. The utility values are then carried up recursively where player 

O tries to minimise the payoff of player X, and player X tries to maximise its payoff. When 

the values reach the root of the tree, the branch with the maximum payoff is selected. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4: A minimax partial game tree for Tic-Tac-Toe [2] 
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function MINIMAX_DECISION (state) returns an ACTION 

 MAX_V ← MAX(MIN_VALUE(state, a ϵ ACTIONS)) 

 return action in ACTIONS with value MAX_V 

function MAX_VALUE(state, game) returns a utility value 

 if TERMINAL_TEST(state) then 

  return UTILITY(state) 

 v ← -∞  

 for each a in ACTIONS(state) do 

  v ← MAX(v, MIN_VALUE(state, APPLY(state, a))) 

 end 

 return v 

function MIN_VALUE(state, game) returns a utility value 

 if TERMINAL_TEST(state) then 

  return UTILITY(state) 

 v ← ∞ 

 for each a in ACTIONS(state) do 

  v ← MIN(v, MAX_VALUE(state, APPLY(state, a))) 

 end 

 return v 

The Minimax pseudo-code algorithm is as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2.3 α-β pruning 

Usually, evaluating every node within a game tree using the minimax or the maximin 

algorithms can be very expensive. Therefore, α-β pruning is a search algorithm that 

decreases the number of nodes that is evaluated using the fact that some branches can be 

eliminated from the game tree (pruning). A game tree has a time complexity of O(bm) where 

b denotes the average number of branches on each level and m denotes the maximum 

depth of the tree. With perfect ordering, α-β pruning can decrease this complexity by up to 

O(bm/2) [22].  
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function ALPHA_BETA_SEARCH(state) returns an ACTION 

 v ← MAX_VALUE(state, -∞, ∞) 

 return action in ACTIONS(state) with value v 

function MAX_VALUE(state, α, β) returns a utility value 

 if TERMINAL_TEST(state) then 

  return UTILITY(state) 

 v ← -∞ 

 for each a in ACTIONS(state) do 

  v ← MAX(v, MIN_VALUE(state, α, β)) 

  if v ≥ β then 

   return v 

  α ← MAX(α, v) 

 return v 

function MIN_VALUE(state, α, β) returns a utility value 

 if TERMINAL_TEST(state) then 

  return UTILITY(state) 

 v ← ∞ 

 for each a in ACTIONS(state) do 

  v ← MIN(v, MAX_VALUE(state, α, β)) 

  if v ≤ α then 

   return v 

  β ← MIN(β, v) 

 return v 

 

The idea of this algorithm [2, 23] is to do a depth-first search to generate a partial game tree 

and then the heuristic state evaluation function is applied to all the leaf nodes of the tree. 

The α and the β bounds are then computed on the internal nodes which cut down on 

subtrees. The α bound is value for the best alternative for MAX along the path to state. The 

β bound is value for the best alternative for MIN along the path to state. The pseudo-code 

algorithm for α-β pruning is [23]:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2.4 Expectiminimax 

In stochastic games, it is not possible to use minimax algorithm because the chance 

elements in the game do not guarantee the payoffs that were discovered. This is where 

expectiminimax comes in. Expectiminimax is very similar to minimax; however, it takes into 

account the chance elements and uses this within the algorithm to maximise the payoff. An 
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… 

if state is a MAX node then 

 return the highest EXPECTIMINIMAX-VALUE of ACTIONS(state) 

if state is a MIN node then 

 return the lowest EXPECTIMINIMAX-VALUE of ACTIONS(state) 

if state is a chance node then 

 return average of EXPECTIMINIMAX-VALUE of ACTIONS(state) 

… 

Expectiminimax tree has min and max nodes, and in addition to this, it also has chance 

nodes which take an expected value of a random event occurring [24]. The minimax tree 

alternates between the max and min nodes, which is same in the expectiminimax tree; 

however, it has the addition of chance nodes being interweaved with these nodes. The 

pseudo-code algorithm of expectiminimax is very much like minimax. It can be altered by 

making a few changes such as [2]: 

 

3.2.5 Cutting off search 

As described before, alpha-beta pruning is a method used to decrease the time complexity 

of the game. Cutting off search is another method that can be used. It limits the depth of the 

tree by a specific amount. Each node is explored only up to the depth specified. In cutting off 

search, the utility function is replaced with the heuristic state evaluation function to get an 

estimated payoff where this is used to select which branch to follow up on [25].  

This type of search is very effective when used for stochastic games which may be using 

expectiminimax algorithm. Since stochastic games have chance elements, as the depth of 

the game tree increases, the more ambiguous it can become. This is because there are 

factors of probability involved. Hence, cutting off the search by limiting the depth of the tree 

results in choosing a branch that can most probably prove to be advantageous. Even though 

this method is effective with stochastic games, it is also still effective for deterministic games. 

Games such as Deep Blue has a depth limit of 12 [25]. 

 

3.2.6 Machine learning 

Machine learning allows computers to learn from situations, preparing them to act without 

someone telling them how to act (by programming them). Machine learning evolved from AI 

[26]. These algorithms overcome following the strict program instructions by taking decision 

based on data. 
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Machine learning algorithms can be classified into three categories of learning including 

Supervised learning, Unsupervised learning, and Reinforcement learning. Supervised 

learning is trained using training data sets. This training data consists of example pairs which 

are the input and the output. The supervised learning algorithm analyses this training data to 

produce a function which can be used to produce outputs depending on the inputs of the 

algorithm. 

Unsupervised learning is the opposite of supervised learning where no training data is given. 

This algorithm tries to define hidden structures into a classification or a categorisation from 

unlabelled input data [27]. There also exists a type of learning that lies in between 

supervised and unsupervised learning called semi-supervised learning. Semi-supervised 

learning uses unlabelled training data sets where some data are labelled, however, mostly 

consists of unlabelled data. 

Reinforcement learning is concerned with how the algorithm must act in an environment. It is 

informed when the action is wrong; however, the wrong actions are never explicitly 

corrected. This results in the algorithm trying all possibilities to find the correct output. To find 

a possibility, reinforcement learning uses exploration of new areas and exploitation of the 

current knowledge [28]. This makes this learning very general and hence, is often used 

within many other disciples including game theory. 

 

3.2.7 Adaptive Game AI 

Adaptive Game AI [29] is the adaptation to the behaviour and the patterns of the opponent 

by analysing their decision strategies to be able to predict their behaviour within a game. 

This ability to predict the next move of the opponent is especially advantageous within a 

simultaneous game because the next move of the player can be selected to gain the 

maximum payoff. For example, in a Rock-Paper-Scissors game, if the opponent is predicted 

to play Rock, the player can play Paper. The AI won’t win all the time, however, by learning 

and adapting to the opponent’s decision strategies, the AI can perform better than chance 

which increases the probability of the AI player winning the game.  

This type of AI can be used to predict the behaviour of the opponent and can be used to 

modify the difficulty of the game to match the player’s skill level which makes the game more 

interesting for the player. 
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3.3 Implementation Language 

An important decision that must be made before the implementation of the project is the 

decision regarding the implementation language that is to be used. Many languages are 

good for this task; hence, well-known languages must be compared with each other.  

The language that I have chosen for this problem is Python. This is because it is simple, 

powerful, and effective. This project will also require an interface that is more advanced than 

text interface to meet Objective 3. Python provides a nice and easy to use Graphical User 

Interface (GUI) called Tkinter.  

Low-level languages such as C/C++ were not chosen for this project because they do not 

offer garbage collection. For C/C++, it is required that memory must be managed within the 

code and this could be error prone; hence, automatic memory management is important 

since the game tree may be large. The disadvantages of C/C++ include error prone, slow to 

write, and frequently unreadable; the advantages of Python are easy to write, readable, and 

error reduction [30]. These advantages of Python are very important in this project. 

Both Python and Java are object orientated, and they both have automatic garbage 

collection. However, I felt that Python is better to be used for this project because it is very 

concise and easy to write and read. 

 

3.4 Blokus Duo 

The game that I have chosen for my project is called Blokus [31] which is a two to four player 

game, shown in Figure 3.5. However, for the implementation of this project, I have chosen 

the game called Blokus Duo which was chosen for the simplicity of this project. This game is 

two player version of Blokus that is played on a 14x14 board which has 196 squares. Each 

player begins the game with 21 pieces. The size of the pieces’ range from 1 to 5 tiles in a 

piece where each piece has a unique shape, as shown in Figure 3.6. A tile is a square within 

a piece, and a piece consists of a total number of tiles that range from 1 to 5. Each player is 

distinguished by the colour of their tiles which is unique to each player. Each set of pieces 

may be blue or red. A piece can be placed on the board in any orientation by flipping or 

rotating the piece, as shown in Figure 3.7. The game objective is to place as many tiles on 

the board as possible; therefore, it is considered better to start off with the 5 sized pieces. 

The ending condition of the game is that neither player can make a legal move. If one player 

out of the two cannot make anymore moves, however, the other player still can, then the 

game can continue until both the players are unable to play anymore moves.  
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3.4.1 Rules 

The order of the game is follows: red, blue. A move is legal, if:  

1. The first move played by each player covers a corner square on the board. Either the 

top-left corner or the bottom-right corner of the board. 

Figure 3.6: Pieces in the board game Blokus [1] 

Figure 3.5: Showing the Blokus board game. a) shows a game of Blokus.  b) shows an 

empty board with the pieces of all player 

(a) (b) 

Figure 3.7: 8 different rotations of a piece in the board game Blokus [4] 
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2. The new piece placed on the board by the player must be touching a corner of at 

least one of the other pieces of the same colour.  

3. Pieces of same colour cannot touch along the edges. 

4. The new piece being placed does not overlap another piece that is already on the 

board. 

3.4.2 Scoring 

The scoring of the game is given by computing the total number of tiles of the unplaced 

pieces of each player. This is done because it’s easier to count these tiles than to count 

each tile placed on the board. The player with the lowest calculated score wins because this 

means that they have more tiles placed on the board. A player may get a bonus of 15 points 

to take away from the overall score if he/she has played all 21 pieces. 

 

3.4.3 Winning Strategies 

Here are a few commonly played winning strategies that could be used within the game:  

1. At the start of the game, place tiles to move to the middle of the board to be able to 

take up as much space on the board as possible later.  

2. Place the largest tiles on the board first as it might be harder to place big tiles on the 

board later due to less space.  

3. Keep one or more means of escape on each side of the area containing the specific 

colour.  

4. Try and block the opponent by covering their most advanced corners to prevent them 

from moving forward.  

5. Keep a note of the squares where no other player can play and keep these spaces in 

reserve while playing in a more exposed area.  

6. Always keep an eye on your remaining pieces and the remaining pieces of your 

opponent. 

 

3.4.4 Classification 

Game classifications were described in Section 3.1.3. These are the classifications of the 

board game Blokus Duo: 

• Two-player: This game can be played with two to four people. However, for 

simplicity, two player game was chosen.  

• Sequential: Each player takes turns to play where each player waits on the other 

player to play their move. 
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• Deterministic: There are no chance elements in this game. Every possible move of a 

player is affected only by the previous moves made by the player or the opponent. 

• Perfect Information: Each player has full knowledge about the current and the 

previous states of board. They also have knowledge about which pieces each player 

has left to play. 

• Non-Zero Sum: The gain of a player does not affect a loss for the other unless the 

game is played in such a way that a corner of the opponent is blocked. Also, it can be 

made possible to place all the pieces of both the players on the board if the board 

size is increased. 

• Non-Cooperative: If the game was cooperative then this defies the purpose of the 

game to try and defeat the other player.  

 

3.4.5 Approach 

The technique that will be used for this game implementation will be minimax applied to a 

heuristic state evaluation at a specific depth limit of the game tree. This will be used by the 

AI player to decide which move to play next which will increase the player’s points and also 

may decrease the opponent’s possibilities of gaining points. Due to computational limits, a 

depth limit will be chosen after testing to find an efficient limit that doesn’t take too much time 

and also, gives a good search. Since a depth limit is being used, a heuristic function will also 

be used to assess states at the limit of the game tree that will be the input for the minimax 

algorithm. The minimax algorithm was chosen because this allows the AI player to look at 

the opponent’s best move and tries to find the best and maximum payoff possible by 

minimising the maximum loss. 

Initially, the approach of the program will be to use a basic approach which uses random 

decision-making rules. Random decision making is very easy to implement, which involves 

choosing any of all the possible moves. A simple heuristic approach will then be taken to 

select a move which uses a greedy decision making rule which may be based on a few 

things such as: choosing a move that places a piece to add the maximum number of tiles, or 

choosing a move that places a piece to increase the maximum number of open corners.  

Later, the approach will be focussed on involving minimax to create the game tree 

recursively until the specified depth limit and then apply the heuristic state evaluation 

function to the leaves of this partial game tree. Different heuristic state evaluation functions 

can be designed and combined to give importance to different features of the game. 

Functions can be created to select a move that decreases the corners of the opponent, 
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increases the corners of the player, or include both; also, can increase the number of tiles on 

the board, etc. 

The greedy approach and the different heuristic state evaluation functions will all be tested 

against each other by creating two AI players where both use different heuristics. This allows 

the comparison of these approaches to understanding which strategy or heuristic wins the 

most. This test will find the most effective heuristic function and this will be chosen for the AI 

player to use to play against human players. 
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4 Design 

This chapter will describe the details of the design stage of the project, which defines the 

workflow for the implementation of the project and continues to describe each step required 

to meet the objectives of the project. This section will use the research from Chapter 3 and 

will form a base for the implementation stage. 

4.1 Workflow 

It is important that the main workflow of the program be designed before the implementation. 

The AI techniques to meet the objectives of the project were researched and described in 

the background research conducted. In the background research, it was decided that the AI 

technique that is going to be used will be minimax and heuristic state evaluation. The 

workflow of the program will include these techniques chosen. It will describe the logic of the 

game program. 

Player 1 will be playing red coloured pieces, and Player 2 will be playing blue coloured 

pieces. It is assumed that Player 1 is a human player and Player 2 is an AI player. The AI 

techniques are only used by the AI player to play a move at each turn. Initially, all players 

have all the pieces, and the board will have no pieces placed on it. The stopping condition of 

the game is when both Player 1 and Player 2 have no more moves to play. If a player has 

moves to play and the other doesn’t, the game still goes on. Therefore, there are two 

Boolean values, both initialised to False, used to end the game: Player1End and 

Player2End; where each of them indicates whether Player 1 has played all their possible 

moves and whether Player 2 has played all their possible moves, respectively. As per the 

order of the turns, Player 1 will play first. Once Player 1 has made their move or has passed 

the move, Player 2, the AI player, will analyse the board to find all the possible moves. 

These possible moves will all be analysed using the minimax algorithm recursively, and the 

heuristic state evaluation function will be applied to determine the next best move at the 

depth limit. If Player 2 cannot find any possible moves, then the Boolean value Player2End 

is assigned to True. When Player 1 passes a turn, the Player1End Boolean value is 

assigned to True because it is assumed the Player 1 will be playing perfectly. Therefore, if 

Player 1 finds any possible moves to place, then they would have played it; hence, it is 

assumed by the program that there are no more possible moves that can be made by Player 

1. After Player 1 passes a turn, and if Player 2 finds possible moves, then once Player 2 has 

played their turn, Player 1 will again get a chance to play their turn, and they can pass the 
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move again if no moves can be played. Also, after a piece is placed on the board by a 

player, the piece is deleted from the player’s list of available pieces. 

The workflow of the program is represented in the form of a Unified Modelling Language 

(UML): 
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4.2 Game Design 

This will be the main function which runs the whole game. As specified in the workflow, the 

game stops only when both players cannot place anymore pieces on the board. Therefore, 

an infinite loop will be used and two Booleans values to denote whether each player has 

finished playing their turns. Once the game has ended, the scoring will be applied to 

determine the winner of the game. The design for the implementation of the game will be 

explained in detail. 

 

Human Player 

When a human player plays the game, he/she must be able to understand from the state 

what pieces are available to play, what pieces the opponent has, and what pieces are placed 

on the board currently. 

The human player must be able to specify the coordinates of where the tile must be put on 

the board and also specify the piece and the rotation of the piece. This information will be 

retrieved from the player using keyboard inputs. The player will be prompted to enter the 

piece and its rotation, the y coordinate and the x coordinate of where to place the piece. If 

the chosen piece does not exist in the player’s piece list, or if placing the move at the given 

coordinates is invalid, then the error will be made known to the player and the player will be 

asked to play again. If the move he/she tried to play is successful, or if the player enters 

‘pass’ then the chance will be passed to the next player.  

 

Initialisation of the properties 

The properties of the game include the board and the pieces placed on it, player to play the 

next move, pieces of Player 1, pieces of Player 2, and the move number. 

The board will be initialised with the specified number of squares and will be initialised to be 

empty. These squares will be denoted as 0 when it is empty when Player 1 has placed a tile 

on it, it will be denoted as 1 and for Player 2 will be denoted as 2. Each square on the board 

will have a unique value, and this will be denoted using a y coordinate and an x coordinate in 

the form, (y,x). The y coordinate denotes the row on the board, and the x coordinate denotes 

the column on the board. Both these coordinates start from 0. 

From the background research, it was understood that the state of the game is what is 

updated and passed to the minimax functions to apply the algorithm recursively. Therefore, 

the state will specify the properties of the game: current player, current board, Player 1’s 
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pieces, Player 2’s pieces, and the move number. The initial state of the game will be set to 

Player 1 to play first, empty board, all pieces assigned to Player 1, all pieces assigned to 

Player 2, and the move number to be 0. 

 

Representation and orientation of pieces 

A piece can be placed on the board by rotating it, or by flipping (reflecting) and then rotate it 

again. An orientation of a piece is the position of the tiles in the piece at a specific rotation of 

the piece. A piece can have eight possible orientations. However, some pieces are 

symmetrical, hence, there will be duplicate orientations for such pieces. Some symmetrical 

pieces do not need to be rotated or flipped, and some do not need to be flipped but must be 

rotated. Therefore, these features of a piece will be specified using a Boolean, so there is no 

unnecessary computation made. Also, it is important to ensure that there are no duplicates 

because this could cause duplicate possible orientations of a piece which may increase 

computation time. 

Each tile in a piece must be uniquely identifiable, and therefore, the tiles will be defined 

using a pair of a y coordinate and an x coordinate in the form (y,x). The coordinates start 

from 0; for the y coordinate, as the tiles go down, the y coordinate increments by 1; for the x 

coordinate, as the tiles go to the right, the x coordinate increments by 1. Figure 4.1a shows 

an example of a 5-tile piece for which the coordinates are: (0,1), (0,2), (1,0), (1,1), (2,1).  

Hard-coding the coordinates of all eight orientations of an un-symmetrical piece is not the 

best solution. To present these pieces, they will be represented in a matrix form as shown in 

Figure 4.1b. The 1 in the matrix represents a tile and 0 represents no tile in the piece. The 

coordinates of the piece will be generated by iterating through the matrix of the specific 

piece, and when it finds a 1, it stores the coordinates of that position. To compute the 

rotations of a piece, iterating through the matrix with different orientation of the matrix gives 

the rotations of the piece. To compute the coordinates in the current orientation, the iteration 

through the matrix can be done from left-to-right; to compute the three other orientations of 

the piece, the iteration through the matrix will be done top-to-bottom, right-to-left, and 

bottom-to-top. This gives all four rotations of the piece because the direction of the iteration 

is taken to be a row. 

To flip the un-symmetrical pieces and find the rotation, it is best to hard-code the reflected 

matrix and then calculate the rotations as specified before. Because computation of the 

reflected piece is only required for some pieces and the computational time will also be 

reduced. This reflection matrix is presented in Figure 4.1c. Only un-symmetrical pieces 
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require this computation. As specified before, there will be a Boolean value to specify 

whether a piece needs to be reflected or not. 

 

 

 

 

 

 

 

Corners and Edges 

For the player to place a piece, they must place it to touch a corner of another piece of same 

colour. The piece cannot be placed on the edge of another piece of same colour. Therefore, 

all the open corners and all the edges must be computed. An open corner is a corner where 

a piece can place a tile with no edges of another piece with the same colour around it. 

To compute the open corners and the edges of a specific player, each square of the board 

must be looped through. If a square is taken on its own, it has four corners: top-left corner, 

top-right corner, bottom-left corner, and bottom-right corner. While looping through the 

board, these corners will be checked for on the board of each square that is populated by 

the player. If a potential open corner is found (the square that is a corner of a piece is 

empty), it will be checked whether there is a tile of the same colour on the square above, 

below, right, left of this found corner. If there isn’t then this corner will be added onto the list 

of all the open corners.  

The edges will be found by searching each square in the same loop that is used to find the 

corners. While looking through each square on the board, if the square above, below, on the 

right, or on the left of the current square, which is populated by a tile by the same player, is 

empty, then this current square is added to the list of edges. 

 

Placing the piece 

As mentioned before, a piece can have up to eight orientations. Therefore, the inputs of this 

function would require the piece, orientation number, the coordinates to place the tile, and 

the move number. It uses the move number to confirm whether the move being placed is the 

first move of either player because they must place the piece to populate either the top-left 

0 1 1 

1 1 0 

0 1 0 

1 1 0 

0 1 1 

0 1 0 

Figure 4.1: a) a 5-tile piece [1]     b) the matrix representation of the piece    c) the reflection 

matrix of the piece 

(a) (b) (c) 
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or the bottom-right corner square of the board. While placing a piece, it must be checked 

that these rules are being met; making it a valid move. Therefore, each tile of the new piece 

will be tested to see if it keeps these rules and if it is placed on an open corner, whether any 

tiles of the piece are touching any edges, and if it is over placing by placing a tile in a square 

that is already populated. The corners and the edges generating function will be used to get 

all the open corners and the free edges of the board for the specific player. These details will 

be used to check whether it is valid to place the current piece on the board at the given 

coordinates. 

 

Displaying the state 

The state of the game cannot be displayed as a text interface since it would be hard for the 

human player to analyse the board and to understand which squares are free and the pieces 

left. Therefore, the state must be displayed on a canvas using squares to represent the 

board where each square is coloured to the tile placed on it. The canvas must also display 

the pieces available for both the players. Since it is a perfect information game, both the 

players may see each other’s pieces to think about the opponent’s possible moves. 

Since the player needs to understand the different orientations of a piece, each different 

orientation will be displayed on the canvas. They will also be given a specific number to help 

the player choose the piece and the orientation they would like to play. As specified before 

the specific numbers will be decimal numbers. 

The board will also specify the coordinates of each row and the column starting from 0 to the 

selected board size. This is so that the player may easily understand the coordinates of the 

board to place the piece. 

 

4.3 AI Player Design 

The AI player is the computer player which uses AI techniques to play the game. The AI 

player will generate the possible moves that can be made from the current state, and these 

moves will be analysed by the minimax algorithm using the heuristic state evaluation 

function. The best move is then selected by the algorithm and placed on the board. 

 

Finding the possible moves 
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The possible moves are the moves that can be successfully made in a specific state by 

following all the rules of the game. In the list of possible moves, the same piece can be 

placed in different parts of the board as there may be more than one open corner. Therefore, 

this is a possible move. The possible move function will only be used by the AI player to find 

the best next move. 

A piece may have more than one orientation, and the board has many corners. A piece can 

be placed if it inhibits any of the open corners and is not on the edge of another piece of 

same colour. To find a possible move, all the corners and the edges must be computed, and 

then all the orientations of all the current pieces of the player must be computed. If this is the 

first move of either player, then the list of corners will only contain either the top-left corner of 

the board or the bottom-right corner of the board and there won’t be any edges. Using these 

it can be checked whether an orientation of a piece can be placed. The algorithm will loop 

through each orientation of a piece. For each orientation, it will calculate the corner tiles of 

the piece and place it on a corner on the board with the rest of the tiles from the piece being 

checked whether it is over placing, being placed within the limits of the board, and if the tile 

is not being placed on an edge. Once it has passed these checks, the move is then stored. 

The algorithm takes the state as the input which specifies the current player so using this, 

the possible moves for the player can be calculated. A possible move will be stored as, the 

piece name, orientation number, and the y and x coordinates. 

The pseudo-code of the algorithm is described as: 
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Minimax algorithm 

As decided before, the minimax algorithm will be used with a depth limit because the number 

of nodes created for the whole game will be too large. The depth limit is the limit given to tell 

the algorithm the maximum number of levels that the game tree may search until. Once the 

depth limit has been reached and the game tree generated, the heuristic state evaluation 

function will be applied to the leaves of the tree. The pseudo-code for the minimax algorithm 

is given in Section 3.2.2. A few changes to the algorithm will need to be made to adapt it to 

the game. The algorithm will make sure that even if there are no possible moves for the next 

player, and there are more levels allowed to be searched as per the depth limit, then the 

algorithm will skip the search of next player and continue the search for current player to find 

the best move. Figure 4.2 shows an example of when a search is skipped for Player 2. The 

dotted arrow represents a skipped search. The depth limit given for this game tree was 3, 

function find_moves(state) returns all possible moves 

 corners ← corners on the board 

 edges ← edges on the board 

 pieces ← pieces of the player from state 

 possible_moves ← initialise to empty 

  

 for each p in pieces do 

  piece_orientations ← all orientations of piece p 

  for each a in piece_orientations do 

   tile_corners ← all corners of piece a 

    for each c in tile_corner do 

     for each corner in board open corners do 

      place c in corner 

      check whether the rest of the tiles 

      in the piece are placed validly 

 

      if valid then 

       add (y, x, move_name,  

        orientation_no) to  

       possible_moves 

 return possible_moves 
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and minimax algorithm was initiated to maximise the payoff for Player 1. After Player 1’s 

search, Player 2 has no more moves, and because the depth limit allows the search of 

Player 1 again, it skips Player 2’s search and searches for Player 1 to maximise it’s payoff. 

Figure 4.3 is like Figure 4.2; however, it shows how Player 1 has no more moves to play. 

Even though there are more depth limit’s, the search is terminated after two searches. This 

is because Player 2 cannot do another search since the number of levels left to search is too 

low. 

Various heuristic state evaluation functions will be compared and analysed in the testing 

phase to find the best heuristic.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MAX (Player 1) 

MIN (Player 2) 

MAX (Player 1) 

No of levels = 3 

No of levels = 2 

No of levels = 1 

No of levels = 0 

Figure 4.3: A partial game tree example of when a level is skipped in minimax 

algorithm. 

Figure 4.2: A partial game tree example of when a level is skipped in minimax 

algorithm. 

MAX (Player 1) 

MIN (Player 2) 

MAX (Player 1) 

No of levels = 3 

No of levels = 2 

No of levels = 1 

No of levels = 0 
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5 Implementation 

The implementation is the main stage of the project where the research conducted and all 

the information collected is applied and developed. This stage is followed by the design 

stage where the implementation was designed. It will be based off the pseudo-codes and the 

design from the design stage and the background stage. This chapter will explain and 

describe how the implementation of the game was done on the design specified in Chapter 4 

and how each part was integrated together to create the final program to meet the objectives 

of the project. 

As discussed and decided in Section 3.3, the programming language that will be used to 

implement the program is Python. This chapter will follow the workflow from the design 

chapter. The representation of the properties of the game will be discussed first and then, 

how the game itself was implemented to allow two human players to play against each other. 

Then, it will describe how the functionality for an AI player to play the game was 

implemented. 

 

5.1 Game Implementation 

As described in the design stage, this function is the main function that runs the whole game. 

Two Booleans are initialised to False which indicates whether Player 1 and Player 2 has 

finished playing their moves. An infinite loop is done where each player takes turns to play. 

The first move is played by Player 1, and if a move was made, then the piece is deleted from 

its piece list. If a move was not made and if Player 2 already finished playing its moves, then 

it breaks out of the infinite loop. If a move was not made and Player 2 has not finished 

playing, then Player 1’s Boolean that indicates whether it has finished playing is assigned to 

True.  The same logic is applied when it is Player 2’s turn. After the infinite loop is 

terminated, the scoring function is applied to calculate the winner of the game.  

When the human player (Player 1) enters ‘pass’, the function returns the old board and 

hence, the computer assumes that the human player does not have any more moves to 

play. However, until the computer player (Player 2) has finished with all its moves, it asks the 

human to play at each turn for which the human can enter ‘pass’ every time to miss a turn. 

This is the same for the computer player. If it has finished with its moves, the human player 

can still play until it has also finished playing all its moves. The implementation of this 
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algorithm is given in blokus.py in the Appendix. How the functions were developed to 

implement the game will be explained further. 

 

Initialisation of the properties 

The properties of the game were specified in the Design chapter. These properties define 

the state of the game. The full implementation of initialisation of the properties of the game is 

given in settings.py in the Appendix. 

The initial board is set to be empty by every square on the board is set to 0. As specified in 

the design, 0 in a square represents that the square is empty, 1 represents that Player 1 has 

a tile placed in the square, and 2 represents that Player 2 has placed a tile in the square. 

Variables such as the BOARD_SIZE was initialised to be 14 as that is the typical board size 

of the Blokus Duo game. A two-dimensional list of BOARD_SIZE is used to represent the 

board. The y coordinate specifies the position of the list for the row and the x coordinate 

specifies the position of the square within the board in the column. 

As was specified, the state of the board is a 5-tuple where the initial state was given 

arguments such as Player 1 to play first, the initial board that was created, the piece list of 

Player 1 and 2, and finally the move number is set to 1 as the initial state will have the 

details to play the first move of the game. 

There are 21 pieces for each player to play. Each piece is given a unique name, and the list 

of the names of pieces are assigned to each player’s piece list; shown in Figure 5.1. 

 

 

 

 

 

 

 

 

Each piece is described using a two-dimensional list which describes each row of the piece. 

The tiles are represented as (y,x), so when using a list, the y coordinate of the tile 

specifies the row. Each row specifies whether a tile is present or not, denoted using 1 or 0 

respectively. The x coordinate specifies the value of the column number which is the position 

Figure 5.1: piece_list lists the unique name of each piece. piece_list1 

is the piece list for Player 1 and piece_list2 is the piece list for Player 2. 
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of the tile within the row. Figure 5.2 shows the specification of each piece and how each 

piece is described. The matrix called cover is the list of rows to specify the position of the 

tiles in the piece. The reflec_cover specifies the reflected position of the tiles. The 

Boolean values reflection and rotation specifies whether the piece requires the computation 

to find all the reflected orientations of the piece and whether the piece requires the 

computation to find all the rotated orientations of the piece, respectively. The size specifies 

the number of tiles in the piece. 

 

 

 

 

 

 

 

 

 

Orientations of a piece 

Once the representation of the properties of the game was implemented, the computation of 

the different orientations of a piece could be implemented. The algorithm as specified in the 

design will loop through the matrix of the piece from different directions to compute the 

rotations a piece. The full implementation of this algorithm is given in library.py in the 

Appendix. 

The function takes the name of the piece as an input and retrieves the details of the piece 

from the piece_spec. The Boolean values are used to check whether the piece requires a 

rotation or a reflection. A for loop within a for loop was used to iterate through the two-

dimensional list to find the coordinates of one orientation. In total, 4 iterations were 

implemented to compute the orientations by iterating from different directions. If a piece must 

be reflected, then this function would be used twice as much, and hence there would be 8 

iterations in total. The variety in directions to calculate all 4 orientations of each side of the 

piece does not affect the number of times a tile is looped through, which is always once. If 

the matrix is a 3 x 3 matrix, then the number of times it visits a position is always 1 and the 

number of times it iterates is 9. 

Figure 5.2: a snippet of piece_spec which describes a piece 
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Some pieces that are symmetrical may require rotation but rather than having 4 different 

orientations for a face, it may only have 2 and this will create duplicates. To avoid duplicates, 

a set was used to store the coordinates of a piece which will only store unique orientations 

of a piece.  

 

Displaying the state 

As specified in the design chapter, the state of the game is displayed to the players using 

Python’s GUI interface called Tkinter. The state of game displays the board and the pieces 

available for each player. Figure 5.3 shows how the initial state is displayed within the game. 

The size of the canvas was chosen to fit the 14 x 14 board and all the 21 pieces of both 

players with its different orientations; CANVAS_WIDTH = 1500, CANVAS_HEIGHT = 800. 

The size of each square on the board was chosen to be 25 pixels, and the size of each tile 

on a piece was chosen to be 10 pixels. Each square on the board displays a colour of grey 

shade if the square has value of 0, red if the square has a value of 1, and blue if the square 

has a value of 2. The y coordinates and the x coordinates of the board are displayed on the 

left side and the top of the board respectively. 

Player 1’s pieces are displayed in red colour, and Player 2’s pieces are displayed in blue 

colour. Each piece and its orientations are given a decimal value. The human player will 

want to specify which orientation of a piece they want to place. Each orientation of a piece is 

given a specific number. For example, for the piece shown in the Figure 4.1a, an orientation 

of that piece may be called 1.1. The number before the decimal point represents the piece 

number and the number after represents the orientation number. The piece number will go 

maximum up to 21, and the orientation number will only go maximum up to 8. While 

displaying the pieces, they are displayed one by one on the canvas. When it reaches close 

to the canvas window, to avoid the pieces being displayed outside of the canvas window, it 

starts to display the pieces on the next line. As each piece is placed on the board, the placed 

piece and all its orientations are removed from the player’s pieces displayed on the canvas. 

Even when pieces are removed from the list, it is ensured that the decimal number that is 

unique to each orientation of every piece, stays the same throughout the game; as shown in 

Figure 5.4. 

The full implementation of the functions used to display the state of the game is given in 

library.py in the Appendix. 
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Figure 5.3: the initial state display before the game has started 

Figure 5.4: the display of the state at the end of a game 
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Corners and edges 

The corners and the edges of the pieces on the board are computed as was described in the 

design. The corners and edges of the specified player are computed by looping through 

each square on the board. This function takes the board and the player to find the corners 

and the edges for and returns a 2-tuple which contains a list of corners and a list of edges. 

The full implementation of this algorithm is given in library.py in the Appendix. 

While iterating through, at each square, if it contains the tile from the specified player, the 

squares on its 4 corners are then checked whether they are empty. If a corner is empty, then 

the edges of that corner square are tested to confirm that they do not contain a tile from the 

same player. If this test is passed, then this is an open corner. The edges are computed in 

the same iteration that is used to find the corners. At each square, if it contains a tile from 

the given player, then its edge squares are tested whether they are empty. If they are, then 

the edge square is stored because another tile from the same player cannot be placed here.  

The corners and the edges are added to a set to avoid duplicates. A corner or an edge is 

only added if it is empty because if it is not empty, then a piece cannot be placed there and 

hence, do not have to check whether another tile may be placed there. The functions that 

use this function already check if a tile is being over placed. Avoiding duplication and the 

addition of corners and edges that are not empty decreases computation time. 

 

Placing a piece 

This function takes the piece, orientation number, y coordinate, x coordinate, and the state 

as the input and returns the board after placing the piece if the piece is placed successfully if 

not, the old board is returned which doesn’t have the piece placed on it. As was specified in 

the design, when placing a piece, the function confirms that the piece exists in the piece list 

of the player that wants to place the piece. If it does, then it gets all the corners and edges 

on the board of the specified player and tries to place the piece on the board. It places the 

piece on the board by placing each tile individually after checking whether it is violating the 

rules of the game. It checks whether the rules 1 and 2 from Section 3.4.1, is kept. This is 

implemented using 2 Boolean functions which are then checked at the end of placing the 

whole piece if were set to True; if it was, then the new board is returned and if not, the old 

board is returned, after printing the error. It also makes sure while placing each tile that it is 

not being placed on an edge, if it is, then it returns the old board. If a tile is violating, then it 

prints out the appropriate error and returns the old board. If it is a valid move, then it places 

the piece on the board and returns the new board. The implementation of this algorithm is 

given in library.py in the Appendix. 



- 40 - 

 

The function prints out the error so that the human player may understand the error with the 

move that was made. The AI player does not require an error message because it is played 

by the computer. Also, when the AI player generates moves, it only generates moves that 

comply with the rules of the game. 

The coordinates will be specified by the player so that the player is specifying where the top 

left tile (0,0) of the piece must be placed on the board. The coordinates of where the rest of 

the pieces will be placed can be worked out by the algorithm from these coordinates. An 

example of how this is done can be shown using Figure 5.5 below. Currently, it is Player 2’s 

move to play. If player 2 wants to play piece 21.2 to cover the coordinates (8,10), (9,9), 

(9,10), (9,11), (10,10) then the (y, x) coordinate specified by the player for this function will 

be (8,9). 

 

 

 

Human turn 

When it is the turn of the human to play, he/she is prompted by the game for the piece to 

play for which he/she would enter the decimal number. It then asks for the y coordinate and 

x coordinate separately. These are the only 3 inputs required by the human player to be able 

to play a piece. The decimal number entered by the player is then split by the decimal point. 

The piece number is used to find the piece name the user wants to place. This piece name 

and the orientation number along with the y and x coordinates and the state of the game is 

passed to the placing piece algorithm. It then tries to place this move and if successful, 

returns the new board. This new board is then returned by the algorithm for the human 

Figure 5.5: state of the game after 3rd move 
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player. If the move is not valid, the placing piece algorithm returns the old board. The 

algorithm of the human player then asks the human player to try again so that he/she can 

correct their error; this is done by checking whether the board returned by the placing piece 

function is same as the old board. If it is, then the player is asked to play again. If not, the 

new board is returned with the name of the piece that was placed. 

If the human player decides to pass the game, then when asked for the piece to play, he/she 

may enter ‘pass’ to pass the move. The function then returns the old board and an empty 

string as the name of the placed piece. 

The implementation of this algorithm is given in blokus.py in the Appendix. 

 

Scoring 

The score of each player is calculated at the end of the game when there are no more 

possible moves by both players. Each player’s un-played pieces are looped through to sum 

the size of each piece that is specified in the piece specification because each tile is worth 1 

point; therefore, the size is the total points gained by that specific piece. If a player has 

played all their pieces, the sum value of the piece sizes, which would be 0 in this case, will 

be subtracted 15 points. This value is then subtracted from the total points a player can get 

by playing all their pieces, which is 89 points. So, when a player has played all their pieces, 

they would get a total of 89 + 15 points. If a player has played only a 5 piece, then their total 

will only be 5 because the total of the un-played pieces’ size would be 84. The winner and 

each player’s scores are then printed. The full implementation of this algorithm is given in 

library.py in the Appendix. 

 

5.2 AI Player Implementation 

For the AI player to make a move, it uses the minimax technique and the heuristic state 

evaluation. To find all the possible moves and the best next move using the minimax, there 

are a few steps that must be made beforehand. The minimax technique looks at all the 

possible moves that can be made by the player. Therefore, a function was created to 

generate all the possible moves of the player from the current state. After this, the minimax 

algorithm was implemented which uses the function to generate the possible moves of the 

player. The heuristic state evaluation function was also implemented to find the best move. 

Few heuristic functions were developed to compare them to each other to find the best 
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heuristic. This comparison will be explained and discussed within the Testing stage of the 

project. All implementations of this algorithm are given in blokus.py in the Appendix. 

 

Possible moves 

The possible moves are computed using the un-played pieces, and the corners of the player 

on the board. The input to this function is the state of the game. As described in the design, 

to find the possible moves of an un-played piece, all the orientations of each piece are 

generated, and the corner tiles of each orientation are computed. These corner tiles of a 

piece are placed on an open corner on the board and checked whether placing the piece 

there complies with the rules of the game given in Section 3.4.1. If it is valid, then the move 

is added to the list where the y and x coordinates are the top-left corner tile (0,0) of the 

piece. The pseudo-code is provided in the design section.  

A possible move is represented in the form: (4, 5, 1, ‘4el’). This specifies the y 

coordinate, x coordinate, orientation number and the piece name. 

 

Minimax 

The minimax function is implemented from the pseudo code from the background section. 

However, as specified in the design section, it was modified to be adapted to the game. The 

minimax algorithm takes the state, the player that is trying to maximise their move, 

specification of whether a max or a min is required, the number of levels left of the game 

tree, and the move to place. The minimax algorithm places the move of the player and 

creates a temporary piece list for the player and removes the placed piece from this. If the 

current level is the depth specified, then the heuristic state evaluation is done, and the value 

is returned. If not, it then creates a new state with the next player to play the move and 

increments the move number and assigns the new piece list to it depending on the player. 

Then the moves of the next player are found and if the next player does not have any moves 

and yet still there are more than 2 levels left that can be searched, then the search of next 

player is skipped. When the search is skipped, it means that the current player gets to go 

onto its next level and the number of levels left is decremented. It then calculates all the 

possible moves of the current player and calls the minimax algorithm for each move which 

then goes through it recursively. If a search is not skipped meaning that the next player has 

possible moves, then the next player’s moves are looped through, and the minimax 

algorithm is called again which will go through each move recursively. This is done until the 

specified depth limit at which the heuristic is returned. Details about skipping searches are 

further explained in the design section. 
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Computer Turn 

The computer turn is the implementation of the MINIMAX_DECISION algorithm for which the 

pseudo-code was given in the background section. It generates all the possible moves of the 

AI player and initiates the minimax algorithm for each move. From these moves, the move 

with the maximum heuristic is chosen and placed on the board using the function to place 

the piece. The move must be a valid move; therefore, this function will not return an error. 

The new board that is returned by the placing piece function is then returned; and the placed 

piece name is also returned. If there are no moves, then the old board is returned with an 

empty string. 
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6 Testing 

It is important that the best winning heuristic is chosen for the AI player of the game. 

Therefore, the testing phase was used to compare and determine the best winning strategy. 

Two AI players will play against each other where both use different heuristic for each 

strategy. These two players will play against each other and the most winning heuristic will 

be chosen to be the best heuristic. Both the AI players will be using minimax algorithm; 

therefore, it is important to choose a depth limit for the search of best move of each player. 

6.1 Depth Limit 

The minimax algorithm was executed using various depth limits to choose an efficient depth 

limit to use while testing each heuristic. Efficiency was measured using the time taken 

overall, and the total number of nodes. The higher the number of nodes, the higher the 

memory taken up on the machine. The results are given in Table 1 below. The depth limits 

were tested using a 14x14 board where the board was empty. From the results, it seems like 

depth 3 may be the best option to choose even though the time taken is rather large. 

However, it must also be considered that these tests were executed when there were no 

pieces on the board. Therefore, when there are more pieces, which means more corners, 

the time and the number of nodes will increase largely because there are more possible 

moves to make. When the board is empty, there is only one corner to test for possible 

moves. From this also, considering the computational limits of the machine, I concluded to 

use a depth limit of 2. 

 

Depth Limit 
No. of max 

nodes 

No. of min 

nodes 

Total no. of 

nodes 
Time taken 

1 0 58 58 29 ms 

2 3364 58 3422 1736 ms 

3 3364 577622 580986 1305771 ms 

4 - - - 
Terminated 

after 12 hrs 

 

Table 1: Comparison of time taken and total no. of nodes for different depth limits 



- 45 - 

 

6.2 Heuristic  

Each test was only executed once because it is pointless to redo a test as the result of a test 

will always be the same. When using a heuristic at a specific state, it will try to optimise the 

payoff and will end up placing the same piece. The winning heuristic of each comparison will 

be compared with other winning heuristics to find the best one from all. The heuristic 

comparisons are explained, and the results are shown below. 

The heuristic tests were based on Strategy 1 and 4 from Section 3.4.3. The tests were then 

evolved from this to find the best solution. 

 

Comparison 1 

Player 1: Decrease corners of the opponent. 

Player 2: Increase its corners. 

The heuristic for Player 1 calculates all the corners of the opponent and the minimax 

decision of Player 1 minimises this. Hence, finding the best next move by minimising the 

number of corners of opponent. 

The heuristic for Player 2 calculates all the corners of itself, and the minimax decision 

increases this. 

 

 

 

 

Figure 6.1: State at the end of game after comparison 1 
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Comparison 2 

Player 1: Decrease corners of the opponent and place big tiles first. 

Player 2: Increase its corners 

The heuristic for Player 1 calculates all the corners of the opponent and the minimax 

decision of Player 1 minimises this. The function to find all the possible moves were limited 

to find possible moves with the biggest sized pieces available. If it cannot find any moves 

with biggest sized pieces, then it finds moves with lower sizes. 

The heuristic for Player 2 calculates all the corners of itself, and the minimax decision 

increases this. 

 

 

 

 

Comparison 3 

Player 1: Decrease corners of the opponent and increase its number of tiles placed 

Player 2: Increase its corners 

The heuristic for Player 1 calculates all the corners of the opponent and the number of its 

squares. The heuristic was as follows: Heuristic = (no. of tiles placed by Player 1 *2) – 

(corners of opponent). The minimax decision of Player 1 maximises this. This heuristic gives 

priority to increasing its number of tiles placed than decreasing the corners of the opponent. 

Figure 6.2: State at the end of game after comparison 2 
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The heuristic for Player 2 calculates all the corners of itself, and the minimax decision 

increases this. 

 

 

 

Comparison 4 

Player 1: increase its corners and place big tiles first. 

Player 2: decrease opponent’s the corners and place big tiles first 

The heuristic for Player 1 calculates all the corners of itself, and the minimax decision of 

Player 1 maximises this. 

The heuristic for Player 2 calculates all the corners of the opponent and the minimax 

decision of Player 2 minimises this. 

The function to find all the possible moves for both players were limited to find possible 

moves with the biggest sized pieces available. If it cannot find any moves with biggest sized 

pieces, then it finds moves with lower sizes. 

 

Figure 6.3: State at the end of game after comparison 3 
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Comparison 5 

Player 1: place big tiles first and decrease the number of tiles placed by opponent. 

Player 2: place big tiles first 

The heuristic for Player 1 calculates all the tiles placed by both players. The heuristic is as 

follows: Heuristic = (no. of tiles placed of Player 1) – (no. of tiles placed by opponent *2). The 

minimax decision of Player 1 maximises this. This heuristic gives priority to decreasing the 

number of tiles placed by the opponent. 

The heuristic for Player 2 calculates all the tiles placed Player 2 and the minimax decision 

function tries to maximise this. 

The function to find all the possible moves for both players were limited to find possible 

moves with the biggest sized pieces available. If it cannot find any moves with biggest sized 

pieces, then it finds moves with lower sizes. 

 

 

Figure 6.4: State at the end of game after comparison 4 



- 49 - 

 

 

 

 

Comparison 6 

Player 1: increase its corners and place big tiles first. 

Player 2: decrease the opponent’s corners, increase its corners, and place big tiles first 

The heuristic for Player 1 calculates all the corners of itself, and the minimax decision of 

Player 1 maximises this. 

The heuristic for Player 2 calculates all the corners of the opponent and its corners. The 

heuristic is as follows: Heuristic = (no. of corners of Player 2 *2) – (no. of corners of 

opponent). The minimax decision of Player 2 maximises this. This heuristic gives priority to 

increasing its number of corners. 

The function to find all the possible moves for both players were limited to find possible 

moves with the biggest sized pieces available. If it cannot find any moves with biggest sized 

pieces, then it finds moves with lower sizes. 

Figure 6.5: State at the end of game after comparison 5 
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Comparison 7 

Player 1: decrease the opponent’s corners, increase its corners, and place big tiles first  

Player 2: increase its corners and place big tiles first. 

The heuristic for Player 1 calculates all the corners of the opponent and its corners. The 

heuristic is as follows: Heuristic = (no. of corners of Player 1 *2) – (no. of corners of 

opponent). The minimax decision of Player 1 maximises this. This heuristic gives priority to 

increasing its number of corners. 

The heuristic for Player 2 calculates all the corners of itself, and the minimax decision of 

Player 2 maximises this. 

The function to find all the possible moves for both players were limited to find possible 

moves with the biggest sized pieces available. If it cannot find any moves with biggest sized 

pieces, then it finds moves with lower sizes. 

Figure 6.6: State at the end of game after comparison 6 
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6.4.1 Results 

The results of each comparison are shown below in Table 2. The player that won each game 

is coloured in green. 

Comparison Player 1 Player 2 
Total no. of 

nodes 
Time (ms) Scores 

1 

Decrease 

corners of 

opponent 

Increase its 

own corners 
1,648,437 933,704 

Player 1 = 34 

Player 2 = 50 

2 

Place big 

tiles first and 

decrease 

corners of 

opponent 

Increase its 

own corners 
783,135 425,638 

Player 1 = 54 

Player 2 = 41 

3 

Increase (no. 

of tiles 

placed * 2) 

and 

decrease 

corners of 

Increase its 

own corners 
1,170,894 1,470,371 

Player 1 = 54 

Player 2 = 41 

Figure 6.7: State at the end of game after comparison 7 
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opponent 

4 

Place big 

tiles first and 

increase 

corners 

Place big 

tiles first and 

decrease 

corners of 

opponent 

575,178 1,060,542 
Player 1 = 73 

Player 2 = 41 

5 

Place big 

tiles first and 

decrease 

(no. of tiles 

placed by 

opponent *2) 

Place big 

tiles first 
325,142 542,051 

Player 1 = 52 

Player 2 = 58 

6 

Place big 

tiles first and 

increase no. 

of corners 

Place big 

tiles first and 

increase (no. 

of corners 

*2) and 

decrease no. 

of corners of 

opponent 

755,392 1,697,035 
Player 1 = 61 

Player 2 = 62 

7 

Place big 

tiles first and 

increase (no. 

of corners 

*2) and 

decrease no. 

of corners of 

opponent 

Place big 

tiles first and 

increase no. 

of corners 

737,601 1,214,382 
Player 1 = 61 

Player 2 = 58 

 

 Table 2: Results of each comparison 
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7 Evaluation 

The evaluation stage is mainly used to analyse the test results to determine the best 

heuristic. This section will consist of the discussion on the test results, and also on the 

project objectives to evaluate whether the project has correctly met the objectives. 

7.1 Testing results 

While testing, each test was evolved from the previous one to try and make it better or to test 

whether different conditions will change the results. After the first few tests, it was obvious 

that placing the big pieces first was a strategy that helps towards gaining points. 

Comparisons 3 and 4 are very similar where the only difference was that one limits the 

pieces when finding possible moves and the other does not. Both try to increase number of 

tiles placed on the board in a move. From Figure 6.3 and 6.4 it can be seen that the pieces 

used are the same but just have some variations on the positions they were placed. 

Therefore, due to the speed of the game, limiting the possible moves were chosen to be a 

better option from henceforth. 

In comparison 6, the scores for both heuristics were very close. Therefore, the heuristics 

were swapped for comparison 7 regarding who starts first to see if this made a difference in 

the winner. From the results of comparison 7, the same heuristic has won the game with 

better results. Therefore, from the results, it concluded that the heuristic ‘Place big tiles first 

and increase (no. of corners *2) and decrease no. of corners of opponent’ will be used for 

the AI player. This AI player will play the first move of the game as this seems to give the 

best results. 

7.2 Project Objectives 

This section evaluates whether the project objectives specified in chapter 2 has been met. 

The list of the objectives and the discussion is as follows: 

• Objective 1: Develop a software capable of correctly playing the game of Blokus in 

accordance with its rules 

During the general testing of the implementation phase, it had been obvious that the 

program is correct as per the rules of the game. This belief was further strengthened 

during the testing phase of the project when the moves were chosen by the program 

rather than a human where there is a higher chance of moves played by the program 
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that is against the rules coming to light. However, there didn’t seem to be such 

things; therefore, this objective has been met. 

 

• Objective 2: Develop a simple rule-based AI algorithm to play the game of Blokus 

The implemented program uses AI techniques such as minimax algorithm and 

heuristic state evaluation to play the game Blokus. Therefore, this objective has been 

met. 

 

• Objective 3: Develop a GUI interface to show the game states 

The implemented program displays the state of game using a Python GUI interface 

called Tkinter. This is described and shown in Section 5.1. Therefore, this objective 

has been met. 

 

• Objective 4: Investigate the use of AI techniques such as Minimax, Heuristic state 

evaluation, Machine learning to enable the algorithm to play ‘intelligently’ 

During the research phase, various AI techniques were investigated including 

Minimax, Heuristic state evaluation, and Machine learning; some of which has been 

used within the project. They were researched about, and the techniques that 

seemed best suitable for the project and for the given timescale of the project were 

chosen. Therefore, this objective has been met. 

 

7.3 Project Evaluation 

Overall, the project went very well since it has been able to meet the aim to investigate and 

implement the use of AI techniques and produce a program that ‘intelligently’ plays Blokus. 

Every stage of the project had no issue since any issues that arose were able to be sorted 

out with some further research into the matter. However, a challenge faced would be the 

computational time of the minimax algorithm and the time it took for a game to finish while 

testing, either in the implementation phase or in the testing phase. This led to some 

confusion whether the algorithm was correct or not. When it took more time to search for a 

move than I expected, I suspected a possible bug. There wasn’t a bug, but it was just the 

computation limits of my machine. However, debugging was done to further investigate the 

program and to solve any bugs that were found. The results of the investigation were then 

added into the testing section of the project and was used to choose a good depth limit. If 

there was more time available, I would have been able to do more extensive tests of 

different heuristics to possibly find a better solution to the current one found. 
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Using AI techniques does meet the aim to play Blokus intelligently; however, I would have 

preferred to add some machine learning elements into the program to be able to make it 

more intelligent. If there was more time available for the project, I am sure this would have 

been possible. Also, in the time given, I was able to meet all the objectives and keep to the 

project plan; therefore, I can say that the time management of the project was very good. 
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8 Conclusion 

The aim of the project was to investigate and implement AI techniques to play Blokus 

‘intelligently’. Initially, a background research was conducted with the aim to give an idea 

about the project and to understand the problem and how this could possibly be tackled. 

Through this research, the aim was broken down into project objectives to make meeting the 

aim an easier task. There were four different stages to the development stage: design, 

implementation, testing, and evaluation. The design was based strongly upon the 

background research conducted and information gathered. It was used to shape the 

implementation stage and create an outline of how to implement the solution to meet the 

objective. The implementation stage was where the knowledge upon the project was 

applied. The testing and evaluation stage was used to investigate on the best solution to 

play the game as ‘intelligently’ as possible. Finally, each of these stages was a step towards 

meeting the aim of the project. 

8.1 Future Work 

There are many future improvements and developments that can be implemented for this 

tool. They were not attempted in this project due to time constraints. Therefore, these will be 

considered in the future work of this project. 

 

8.1.1 Test more strategies to find a better heuristic 

In Section 3.4.3, it specifies a few strategies that will help towards winning the game. 

Strategy 2 and 4 were used to explore a good heuristic within this project. Therefore, a 

possible improvement for this project would be to implement and test the strategies 1, 3, and 

5. This includes implementing the knowledge into the program where the minimax algorithm 

it can determine where it the player has placed pieces on the board and from this work out 

the next best move.  

 

8.1.2 Adaptive AI 

Currently, the AI player only uses its ways and uses its own heuristics to try and predict what 

the opponent may play. However, the opponent may not be using the same heuristic as the 

player. Therefore, a possible improvement would be to understand how the opponent plays 
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it’s moves by determining their heuristic and to include this heuristic in the minimax algorithm 

when playing as the opponent in a specific level. This will give a better chance of winning. 

 

8.1.3 Add more players  

 

Currently, the game only allows 2 players in the game. The game Blokus can have from 2-4 

players in a game. A possible improvement for the program would be to include up to 4 

players and also giving the player a choice to include the number of players they want. 

Hence, implementing the real game of Blokus. 

 

8.1.4 Include α-β pruning 

Currently, the game takes a very long time to finish when two AI players play against each 

other. α-β pruning can be included to make the AI player choose a move quicker. This 

makes the game more efficient and allows the use of a higher depth limit which further helps 

to find the best move. 
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Appendix 

settings.py 

from copy import deepcopy 

 

TOTAL_TILES = 89 

BOARD_SIZE = 14 

MIN_MAX_LEVELS = 2 

CANVAS_WIDTH = 1500 

CANVAS_HEIGHT = 800 

INFINITY = 1.e400 

 

INTRO = "Each piece placed must be touching a corner (but not on an 

edge) of a piece of same colour. Place as many tiles as possible. 

Most number of tiles on the board wins." 

INTRO2 = "When asked for a move, type the decimal number of piece. 

When prompted, enter y coordinate and x coordinates to place the 

(0,0) tile of the piece." 

 

piece_list = [ 'unit', 'pair', 

                '3line', '3v', 

                '4line', '4el', '4tee', '4sq', '4z', 

                '5line', '5el', '5z', '5l', '5u', '5t', '5T', 

                '5v',    '5w',  '5s', '5?', '5cross' ] 

# cover, corner and edge squares are listed as (y,x) coords 

# with (0,0) being the top leftmost cell of the piece.                

piece_spec = { 'unit': {   'cover': [[1]], 

                      'reflection': 'no', 
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'rotation': 'no', 

                        'size': 1 

                       }, 

               'pair': {   'cover': [[1,1]], 

                      'reflection': 'no', 

                        'rotation': 'yes', 

                        'size': 2 

                       }, 

              '3line': {   'cover': [[1,1,1]], 

                      'reflection': 'no', 

                        'rotation': 'yes', 

                        'size': 3 

                       }, 

                 '3v': {   'cover': [[1,1],[0,1]], 

                      'reflection': 'no', 

                        'rotation': 'yes', 

                        'size': 3 

                       }, 

              '4line': {   'cover': [[1,1,1,1]], 

                      'reflection': 'no', 

                        'rotation': 'yes', 

                        'size': 4 

                       }, 

                '4el': {   'cover': [[1,1,1],[1,0,0]], 

                    'reflec_cover': [[1,1,1],[0,0,1]], 

                      'reflection': 'yes', 

                        'rotation': 'yes', 

                        'size': 4 

                       }, 
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               '4tee': {   'cover': [[1,1,1],[0,1,0]], 

                      'reflection': 'no', 

                        'rotation': 'yes', 

                        'size': 4 

                       }, 

                '4sq': {   'cover': [[1,1],[1,1]], 

                      'reflection': 'no', 

                        'rotation': 'no', 

                        'size': 4 

                       }, 

                 '4z': {   'cover': [[1,1,0],[0,1,1]], 

                    'reflec_cover': [[0,1,1],[1,1,0]], 

                      'reflection': 'yes', 

                        'rotation': 'yes', 

                        'size': 4 

                       }, 

              '5line': {   'cover': [[1,1,1,1,1]], 

                      'reflection': 'no', 

                        'rotation': 'yes', 

                        'size': 5 

                       }, 

                '5el': {   'cover': [[1,1,1],[1,1,0]], 

                    'reflec_cover': [[1,1,1],[0,1,1]], 

                      'reflection': 'yes', 

                        'rotation': 'yes', 

                        'size': 5 

                       }, 

                 '5z': {   'cover': [[1,1,0,0],[0,1,1,1]], 

                    'reflec_cover': [[0,0,1,1],[1,1,1,0]], 
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                      'reflection': 'yes', 

                        'rotation': 'yes', 

                        'size': 5 

                       }, 

                 '5l': {   'cover': [[1,1,1,1],[1,0,0,0]], 

                    'reflec_cover': [[1,1,1,1],[0,0,0,1]], 

                      'reflection': 'yes', 

                        'rotation': 'yes', 

                        'size': 5 

                       }, 

                 '5u': {   'cover': [[1,0,1],[1,1,1]], 

                      'reflection': 'no', 

                        'rotation': 'yes', 

                        'size': 5 

                       }, 

                 '5t': {   'cover': [[1,1,1,1],[0,1,0,0]], 

                    'reflec_cover': [[1,1,1,1],[0,0,1,0]], 

                      'reflection': 'yes', 

                        'rotation': 'yes', 

                        'size': 5 

                       }, 

                 '5T': {   'cover': [[1,1,1],[0,1,0],[0,1,0]], 

                      'reflection': 'no', 

                        'rotation': 'yes', 

                        'size': 5 

                       }, 

                 '5v': {   'cover': [[1,0,0],[1,0,0],[1,1,1]], 

                      'reflection': 'no', 

                        'rotation': 'yes', 
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                        'size': 5 

                       }, 

                 '5w': {   'cover': [[1,0,0],[1,1,0],[0,1,1]], 

                      'reflection': 'no', 

                        'rotation': 'yes', 

                        'size': 5 

                       }, 

                 '5s': {   'cover': [[1,1,0],[0,1,0],[0,1,1]], 

                    'reflec_cover': [[0,1,1],[0,1,0],[1,1,0]], 

                      'reflection': 'yes', 

                        'rotation': 'yes', 

                        'size': 5 

                       }, 

                '5?':  {   'cover': [[1,1,0],[0,1,1],[0,1,0]], 

                    'reflec_cover': [[0,1,1],[1,1,0],[0,1,0]], 

                      'reflection': 'yes', 

                        'rotation': 'yes', 

                        'size': 5 

                       }, 

             '5cross': {   'cover': [[0,1,0],[1,1,1],[0,1,0]], 

                      'reflection': 'no', 

                        'rotation': 'no', 

                        'size': 5 

                       } 

             } 

 

 

initial_board = [[ 0 for x in range(BOARD_SIZE) ]  

                         for y in range(BOARD_SIZE) ] 
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piece_list1 = deepcopy( piece_list ) 

piece_list2 = deepcopy( piece_list ) 

 

initial_state = ( 1, initial_board, piece_list1, piece_list2, 1 ) 
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library.py 

from tkinter import * 

from settings import * 

 

def setup(): 

    global w 

    master = Tk() 

    w = Canvas(master, width=CANVAS_WIDTH, height=CANVAS_HEIGHT) 

    w.pack() 

     

# get all the coordinates of the orientations of a piece 

def all_orientations(p): 

    coord_list = set() 

    matrix = piece_spec[p]['cover'] 

    coord_list = coord_list.union(coordinates_matrix(matrix))  

     

    rotate = piece_spec[p]['rotation'] 

    if(rotate == 'yes'): 

        coord_list = coord_list.union(coordinates_rotate(matrix)) 

         

    reflec = piece_spec[p]['reflection'] 

    if(reflec == 'yes'): 

        matrix = piece_spec[p]['reflec_cover'] 

        coord_list = coord_list.union(coordinates_matrix(matrix)) 

        coord_list = coord_list.union(coordinates_rotate(matrix))  

      

    return list(coord_list) 
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# get the coordinates from a given matrix 

def coordinates_matrix( matrix ): 

    coord_set = set() 

    l = [] 

    b = 0 

 

    for x in range(len(matrix[0])):   #    left to right 

        a = 0 

        for m1 in matrix: 

            if m1[x] == 1: 

                l.append((a,b)) 

            a += 1 

        b += 1 

    tup1 = tuple(l) 

    coord_set.add(tup1) 

    return coord_set 

     

# get the rotation coordinates given a matrix 

def coordinates_rotate( matrix ): 

    coord_set = set() 

    l = [] 

    b = 0 

  

    for x in range(len(matrix)-1,-1,-1):    #    bottom to up 

        a = 0 

        for g in matrix[x]: 

            if g == 1: 

                l.append((a,b)) 
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            a += 1 

        b += 1 

      

    tup2 = tuple(l) 

    coord_set.add(tup2) 

     

    l = [] 

    b = 0 

  

    for g in range(len(matrix[0])-1,-1,-1): 

        a = 0 

        for x in range(len(matrix)-1,-1,-1):    #    right to left 

            if matrix[x][g] == 1: 

                l.append((a,b)) 

            a += 1 

        b += 1 

      

    tup3 = tuple(l) 

    coord_set.add(tup3) 

     

    l = [] 

    b = 0 

  

    for x in matrix:    #    top to bottom 

        a = 0 

        for g in range(len(x)-1,-1,-1): 

            if x[g] == 1: 
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                l.append((a,b)) 

            a += 1 

        b += 1 

      

    tup4 = tuple(l) 

    coord_set.add(tup4) 

 

    return coord_set 

         

# place a piece on the board given the orientation position and 

coordinates 

def place_piece( p, orientation_no, Y, X, state ): 

    player = state[0] 

    board = state[1] 

    move_number = state[4] 

     

    if not ((player == 1 and p in state[2]) or (player == 2 and p in 

state[3])): 

        print("FAIL. PLAYER DOES NOT HAVE THIS PIECE") 

        return board 

     

    newboard = deepcopy(board) 

    initial = False 

    valid = False 

     

    plac = all_orientations(p) 

    piece_to_place = plac[int(orientation_no)-1] 

    (corners,edges) = get_all_corners_edges(board, player) 
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    for coord in piece_to_place: 

        y = Y+coord[0] 

        x = X+coord[1] 

 

        if (newboard[y][x] != 0): 

            print(( p, orientation_no, board, Y, X, player, 

move_number )) 

            print("FAIL. OVERPLACING") 

            return board 

        elif (((move_number == 1 or move_number == 2 ) and  # check 

whether the first move fills in the tiles on each corner of the grid 

               ((y,x) == (0,0) or (y,x) == (BOARD_SIZE -1, 

BOARD_SIZE -1))) or move_number > 2): 

            initial = True 

             

        # check whether a valid move 

        if ((move_number > 2 and (y,x) in corners) or move_number <= 

2): 

            valid = True 

        elif ((y,x) in edges): 

            print(( p, orientation_no, board, Y, X, player, 

move_number )) 

            print("FAIL. CAN'T PLACE ON EDGE") 

            return board 

         

        newboard[y][x] = player 

     

    if (initial and valid): 

        return newboard 
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   else: 

        print("FAIL. PIECE NOT PLACED CORRECTLY ON CORNER") 

        return board 

 

# draw a square cell given the cell size and coordinates 

def draw_cell(topleft_x,topleft_y,cell_size,y,x,col): 

    w.create_rectangle(topleft_x + (x*cell_size), 

                       topleft_y + (y*cell_size)+10, 

                       topleft_x + ((x+1)*cell_size), 

                       topleft_y + ((y+1)*cell_size)+10, 

                       fill=col) 

    w.update() 

 

# display the tiles on the canvas 

def display_tiles( tiles, topleft_x, topleft_y, col ): 

    initial = topleft_x 

    n = 1 

    e = 1 

 

    for p in piece_list: 

        if (p in tiles): 

            e = 1 

            for piece in all_orientations(p): 

                for coord in piece:  

                    

draw_cell(topleft_x,topleft_y,10,coord[0],coord[1],col) 

                w.create_text(topleft_x + 10,topleft_y+60, 

text=str(n)+"."+str(e),font="bold") 

                w.update() 
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                topleft_x += (10 + (len(piece) * 10)) 

                 

                if topleft_x > CANVAS_WIDTH-230: 

                    topleft_x = initial 

                    topleft_y += (20 + (len(piece) * 10)) 

                e += 1 

        n = n + 1 

         

         

# display the board and the pieces of each player 

def display_state( state ): 

    w.delete("all") 

     

    board = state[1] 

 

    for y in range(BOARD_SIZE): 

        w.create_text(55 + (y*25),35, text=str(y), font="bold") 

        w.create_text(25,67 + (y*25), text=str(y), font="bold") 

        w.update() 

        for x in range(BOARD_SIZE): 

            draw_cell(45,45,25,y,x,'#dddddd' if board[y][x] == 0 

else "red" if board[y][x] == 1 else "blue") 

             

    display_tiles(state[2],430,5,'red') 

    display_tiles(state[3],30,430,'blue')  

     

def check_orientation_with_corners( board, board_open_corners, 

board_edges, orientations, position, piece ): 
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    moves = [] 

    tilecorners = tile_corners(orientations[position]) 

    for corner in board_open_corners: 

        Y = corner[0] 

        X = corner[1] 

        for t in tilecorners: 

            c = [n for n in orientations[position] if not (n[0] == 

t[0] and n[1] == t[1])]    # get all coords of tile except the 

corner tuple 

            valid = True 

                 

            for r in c: 

                diffY = Y+(r[0] - t[0]) 

                diffX = X+(r[1] - t[1]) 

                 

                # check whether this orientation is a valid move on 

the board 

                if not ( diffY < BOARD_SIZE and diffY > -1 and diffX 

> -1 and  

                         diffX < BOARD_SIZE and board[diffY][diffX] 

== 0 and  

                         (diffY,diffX) not in board_edges): 

                    valid = False 

                    break 

             

            # add to the list of possible moves 

            if valid: 

                move = (Y-t[0],X-t[1],position+1,piece) 

                moves.append(move) 

    return moves 
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# get all the corner for a specific orientation of a tile 

def tile_corners( coords ): 

    corners = [] 

     

    for i in coords: 

        y = i[0] 

        x = i[1] 

        if (((y+1,x) not in coords or (y-1,x) not in coords) and 

((y,x-1) not in coords or (y,x+1) not in coords)): 

            corners.append(i) 

 

    return corners 

 

# get all edges and corners of the board for the specific player 

def get_all_corners_edges( board, player ): 

    corners = set() 

    edges = set() 

     

    for y in range(BOARD_SIZE): 

        for x in range(BOARD_SIZE): 

            if (board[y][x] == player): 

                if (y > 0 and board[y-1][x] == 0): 

                    edges.add((y-1,x))   # top edge 

                    if (x < BOARD_SIZE-1 and board[y-1][x+1] == 0 

and edges_of_corner(y-1,x+1,board,player)): # top right corner 

                        corners.add((y-1,x+1)) 

                    if (x > 0 and board[y-1][x-1] == 0 and 

edges_of_corner(y-1,x-1,board,player)): # top left corner 

                        corners.add((y-1,x-1)) 
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                if (y < BOARD_SIZE-1 and board[y+1][x] == 0): 

                    edges.add((y+1,x))   # bottom edge 

                    if(x < BOARD_SIZE-1 and board[y+1][x+1] == 0 and 

edges_of_corner(y+1,x+1,board,player)): # bottom right corner 

                        corners.add((y+1,x+1)) 

                    if (x > 0 and board[y+1][x-1] == 0 and 

edges_of_corner(y+1,x-1,board,player)): # bottom left corner 

                        corners.add((y+1,x-1)) 

                 

                if (x > 0 and board[y][x-1] == 0): # left edge 

                    edges.add((y,x-1)) 

                if (x < BOARD_SIZE-1 and board[y][x+1] == 0): # 

right edge 

                    edges.add((y,x+1)) 

 

    return (list(corners), list(edges)) 

 

def edges_of_corner(cy, cx, board, player): 

    if(((cy > 0 and board[cy-1][cx] != player) or cy == 0) and # top 

       ((cx < BOARD_SIZE-1 and board[cy][cx+1] != player) or cx == 

BOARD_SIZE-1) and # right 

       ((cy < BOARD_SIZE-1 and board[cy+1][cx] != player) or cy == 

BOARD_SIZE-1) and # bottom 

       ((cx > 0 and board[cy][cx-1] != player) or cx == 0)):    # 

left 

        return True 

     

    return False 

 

def calc_score_pieces( pieces ): 
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    n = 0 

    for i in pieces: 

        p = piece_spec[i]['size'] 

        n += p 

    return n 

 

def get_sized_pieces(pieces, size_pieces): 

    new_pieces = [] 

    for i in pieces: 

        n = piece_spec[i]['size'] 

        if n == size_pieces: 

            new_pieces.append(i) 

     

    return new_pieces 

def win( state ): 

    p1 = calc_score_pieces(state[2]) 

    p2 = calc_score_pieces(state[3]) 

     

    if p1 == 0: 

        p1 -= 15 

         

    if p2 == 0: 

        p2 -= 15 

 

    if ( p1 < p2 ): 

        print ('Player 1 has won the game.') 

    elif ( p2 < p1 ): 

        print ('Player 2 has won the game.') 
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    else: 

        print ('The game is a tie!') 

 

    print() 

    print ('Scores:') 

    print('Player 1 = ', TOTAL_TILES - p1)  

    print('Player 2 = ', TOTAL_TILES - p2) 
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blokus.py 

from copy import deepcopy 

 

import time 

from settings import * 

from library import * 

maxcalls = 0 

mincalls = 0 

 

# get all the possible moves that the computer can do, given the 

state of the board 

def possible_moves( state ): 

    player = state[0] 

    board = state[1] 

    move_number = state[4] 

     

    if player == 1: 

        player_pieces = state[2] 

    else: 

        player_pieces = state[3] 

     

    moves = [] 

    sizes = [5,4,3,2,1] 

     

    # if it's first move of the computer then must place on either 

corner of the board 

    if(move_number == 1 or move_number == 2): 

        if board[0][0] == 0: 

            board_open_corners = [(0,0)] 
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        else: 

            board_open_corners = [(BOARD_SIZE-1, BOARD_SIZE-1)] 

        board_edges = [] 

    else: 

        (board_open_corners, board_edges) = 

get_all_corners_edges(board, player) 

         

    i = 0 

    while moves == [] and not i == len(sizes): 

        sized_pieces = get_sized_pieces(player_pieces, sizes[i])  

        for x in sized_pieces: 

            p = all_orientations(x)   # find all orientations of the 

piece 

            for u in range(len(p)): 

                moves_each_orientation = 

check_orientation_with_corners(board, board_open_corners, 

board_edges, p, u, x) 

                moves = moves + moves_each_orientation 

        i += 1 

         

    return moves 

 

def max_min_value( state, player, max_or_min, no_of_levels, move ): 

    global maxcalls, mincalls 

    if (max_or_min == 'min'): 

        mincalls += 1 

    else: 

        maxcalls += 1 

         

    if (state[0] == 1): 
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        current_player = 1 

        next_player = 2 

        player_pieces = state[2] 

        other_player_pieces = state[3] 

    else: 

        current_player = 2 

        next_player = 1 

        player_pieces = state[3] 

        other_player_pieces = state[2] 

             

    new_pieces = deepcopy(player_pieces) 

         

    newboard = place_piece( move[3], move[2], move[0], move[1], 

state ) 

    new_pieces.remove(move[3]) 

     

    if no_of_levels-1 == 0: 

        return heuristic(newboard, player)  

     

    if (current_player == 1): 

        new_state = (next_player, newboard, new_pieces, 

other_player_pieces, state[4] + 1) 

    else: 

        new_state = (next_player, newboard, other_player_pieces, 

new_pieces, state[4] + 1)   

 

    if (max_or_min == 'min'): 

        v = INFINITY 

    else: 

        v = -INFINITY 
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    next_player_moves = possible_moves(new_state) 

     

    # if there are more levels than can be searched for current 

player, skip search of next player 

    if next_player_moves == [] and no_of_levels > 2: 

        if(current_player == 1): 

            new_state = (current_player, newboard, new_pieces, 

other_player_pieces, state[4] + 2) 

        else: 

            new_state = (current_player, newboard, 

other_player_pieces, new_pieces, state[4] + 2) 

             

        return skip_turn(new_state, player, no_of_levels-1, 

max_or_min) 

     

    #    analyse each move 

    for m in next_player_moves: 

        if(max_or_min == 'min'): 

            r = max_min_value(new_state, player, 'max', 

no_of_levels-1, m) 

            v = min(v, r) 

        else: 

            r = max_min_value(new_state, player, 'min', 

no_of_levels-1, m) 

            v = max(v, r)  

     

    if next_player_moves == []: 

        return heuristic(newboard, player) 

     

    return v 
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def skip_turn (state, player, no_of_rounds, max_or_min): 

    global maxcalls, mincalls 

    if (max_or_min == 'min'): 

        mincalls += 1 

    else: 

        maxcalls += 1 

         

    moves = possible_moves(state) 

         

    if moves == []: 

        return heuristic(state[1], player) 

     

    if (max_or_min == 'min'): 

        v = -INFINITY 

    else: 

        v = INFINITY 

         

    for m in moves: 

        if(max_or_min == 'min'): 

            r = max_min_value(state, player, 'min', no_of_rounds-1, 

m) 

            v = max(v, r) 

        else: 

            r = max_min_value(state, player, 'max', no_of_rounds-1, 

m) 

            v = min(v, r) 

    return v 

 

def computer_turn( state ): 
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    moves = possible_moves(state) 

 

    if(moves == []): 

        return (state[1],'') 

 

    pos = -1 

    heu = -INFINITY 

    inc = 0 

    for m in moves: 

        h = max_min_value( state, 1, 'min', MIN_MAX_LEVELS, m) # 

place the piece and find heuristic value 

        if ( h > heu ): 

            pos = inc 

            heu = h 

        inc += 1 

          

    move = moves[pos] 

    newboard = place_piece( move[3], move[2], move[0], move[1], 

state ) 

    return (newboard, move[3])  

 

#    find best move using this function 

def heuristic( board, player ): 

    if player == 1:  

        other_player = 2 

    else: 

        other_player = 1 

  

    open_corners = get_all_corners_edges(board, player)[0] 
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    open_corners_other = get_all_corners_edges(board, 

other_player)[0] 

     

    return (len(open_corners)*2) - len(open_corners_other) 

 

#    implements a human turn of the game 

def human_turn( state ): 

    board = state[1] 

    newboard = board 

         

    while (newboard == board):  # until their move is valid keep 

asking 

        print() 

        p = input('Your move? ') 

        if(p.lower() == 'pass'): 

            return (board,'') 

        l = p.split('.') 

        piece = list(piece_spec)[int(l[0])-1] 

        y = int(input('Y coordinate ')) 

        x = int(input('X coordinate '))  

        try: 

            newboard = place_piece(piece,l[1],y,x,state) 

        except IndexError: 

            print('PLEASE TRY AGAIN') 

             

    return (newboard, piece)  

 

# PLAY GAME 

def game( state ): 
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    print(INTRO) 

    print() 

    print(INTRO2) 

    print() 

    print("GAME START") 

    move_number = state[4] 

    player = 1 

    finish1 = False 

    finish2 = False 

    while True: 

        display_state(state) 

        board = state[1] 

        print( '\nPlayer to move: ', state[0], "\n" ) 

        if(move_number%2 == 0): #    Player 2 

            (newboard, piece) = human_turn(state) 

             

            if(newboard == board and finish1): 

                break 

            elif(newboard == board): 

                finish2 = True 

            else: 

                state[3].remove(piece) 

                 

            player = 1 

        else:               #    Player 1 

            (newboard, piece) = computer_turn(state)  

             

            if(newboard == board and finish2):  

                break 
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            elif(newboard == board): 

                finish1 = True 

            else: 

                state[2].remove(piece) 

                 

            player = 2 

             

        move_number += 1 

        new_state = (player, newboard, state[2], state[3], 

move_number) 

        state = new_state 

         

    win(state) 

 

def main(): 

    setup() 

    game(initial_state) 

       

main() 


