
Exploring Artificial Intelligence within a Card and Board Game:
Samurai

Yi Zhou

Submitted in accordance with the requirements for the degree of
MSc Computer Science

2018/2019

School of Computing
FACULTY OF ENGINEERING

- ii -

The candidate confirms that the following have been submitted:

Items Format Recipient(s) and Date

Project Report PDF Minerva (02/09/19)

Project Report Physical Copy (x2) SSO (02/09/19)

Code GitLab Repository Supervisor, assessor (02/09/19)

Participant Consent Forms Signed forms in envelope SSO (02/09/19)

Type of Project: _______Exploratory Software________

The candidate confirms that the work submitted is their own and the appropriate
credit has been given where reference has been made to the work of others.

I understand that failure to attribute material which is obtained from another source
may be considered as plagiarism.

(Signature of student)_______________________________

© 2019 The University of Leeds and Yi Zhou

- iii -

Summary

This project exploratory created an artificial player which had capable of defeating a human
player in a rare researched board game called Samurai. A simple digital version of Samurai
was implemented to allow different algorithms to compete and to be compared, and
ultimately selecting an optimal artificial player strategy that had a satisfactory possibility to
surpass a human player.

- iv -

Acknowledgements

First of all, I would like to thank Dr.Brandon for his selfless guidance during my project.
Secondly, I would like to thank my assessor Dr.Isolde for giving me suggestions in the
midterm meeting, which pointed me a clear direction of later implementation.

- v -

Table of Contents

Summary.. iii
Acknowledgements...iv
Table of Contents..v
Chapter 1 Introduction...1

1.1 The problem.. 1
1.2 Project aim...2
1.3 Objectives..2
1.4 Methodology..2

Chapter 2 Background Research..4
2.1 Game theory..4

2.1.1 Terminology.. 4
2.1.2 Game Types..5
2.1.3 Game Strategies.. 8
2.1.4 Game Representations... 9

2.2 Artificial Intelligence Techniques... 10
2.2.1 Heuristic state Evaluation...11
2.2.2 Minimax Algorithm... 12
2.2.4 Expectiminimax.. 13
2.2.5 Alph-beta pruning...13

2.3 Samurai..14
2.3.1 Setup..14
2.3.2 Rules..17
2.3.3 Scoring and Capture... 18
2.3.4 Winning Conditions..18
2.3.5 Scope of Project...19
2.3.6 Approach...19

2.4 Summary... 20
Chapter 3 Game Implementation..21

3.1 Language...21
3.2 Workflow..22
3.3 Game Design..24

3.3.1 Representation of Game Components...24

- vi -

3.3.2 Interface...27
Chapter 4 Artificial Intelligence Player Implementation...30

4.1 Basic strategies.. 30
4.1.1 Random Selection...30
4.1.2 Greedy Selection...31
4.1.3 Summary.. 31

4.2 Advanced strategies... 32
4.2.1 Heuristic state Evaluation Functions..32
4.2.2 Minimax Algorithm.. 34
4.2.3 Summary.. 36

Chapter 5 Testing..38
5.1 Tuning Parameters..38

5.1.1 Internal Parameters in Advanced Strategy 2..38
5.1.2 External Parameters in Heuristic Function... 41

5.2 Strategy Comparison..43
5.3 Minimax and Non-Minimax Strategy Comparison..45
5.4 Human Player Test... 46

Chapter 6 Conclusion...48
6.1 Project Outcomes..48
6.2 Personal Reflection...49
6.3 Future Work..50

List of References...52
Appendix A External Materials..54
Appendix B Ethical Issues Addressed..55

- 1 -

Chapter 1
Introduction

It can be said that game is one of the most widely applied areas of Artificial Intelligence(AI) ,
especially in the game of strategy confrontation. The confrontation between AI and players
has always been the main research technology in the field of game[1]. Since professor
Shannon proposed to write programs for Chess in 1950, Game Artificial Intelligence has
been the forefront of Artificial Intelligence research technology, known as the "Drosophila" in
the field of Artificial Intelligence[2]. Game AI promote the development of Artificial
Intelligence technology and has a profound impact on society. In 2017, Google's Artificial
Intelligence agent — AlphaGo beat human champion of Go — Lee Sedol, which has shaken
the world and has led to a new round of AI fever around the world[3]. More people has
started to develop and create a powerful AI to fight or even defeat humans in various types
of Game.

There has been numerous research has conducted on AI programs that play adversarial
games using search-intensive AI techniques. Mature and completed AI agents has been
created from deeply researching for straightforward board games, such as Chess and
Checker. However, there still has some “non-solved” board games which has more
competitive rules and strategy to explore a effective AI agent.

Samurai is one of that “non-solved” board games which has high complexity and flexibility in
adversarial games. It is very challenging and worthwhile to explore an Al agent for Samurai ,
no matter to test current AI techniques or to improve them.

1.1 The problem

The long-term exploration of AI for board game is ongoing, but most studies are more
enthusiastic about classic board games[4], e.g. Chess and Go.There are still a large number
of relatively complex board games that still need to be explored, and Samurai is one of them.
This scope of this project is to reconstructs the 1988 strategy board game Samurai digitally,
and develops an AI system that can mimic humans and surpass humans. Although rules of
Samurai seem to be uncomplicated for humans, it still has more uncertainty and
randomness, compared to traditional board games. These attributes make Samurai a
particularly interesting strategy game to build an artificial player that can compete with
humans and test the feasibility of various types of Artificial Intelligence technology.

- 2 -

On the other hand, although there are some digital versions of Samurai, the successful
Artificial Intelligence agents in these versions are still relatively lacking. According to
background research, it is difficult to find a “Solved” Artificial Intelligence cases and materials
related to Samurai, so It is valuable and necessary to study the feasibility of applying some
Artificial Intelligence technology to such a complex strategy game.

1.2 Project aim

The aim of this project is basically to construct a digital representation of the board game
Samurai and explore a effective artificial player which can compete or even surpass the
human players.

During this project, different algorithms will be tested and investigated to continually
improved the performance of the agent, and attempt to apply and evaluate methods of
constructing advanced artificial players in well known board games.

1.3 Objectives

Five objectives are established:

• Produce a playable programme of the board and card game Samurai.
• Develop an AI algorithm for playing Samurai.
• Compare different algorithms to find the best solution for ‘Samurai AI’.
• Test the programme and evaluate the performance of AI against human players.

1.4 Methodology

In this project, I shall be developing an exploratory software. It is not a business standard, it
is just a research tool, so it will not do too much work on the user interface and user
experience. Although the program may not be available to others as a valid program, it will
fully perform the task of this course design. Due to the large unknowns and uncertainties
about such projects, I choose the iterative development method during the development
process, which is a method of designing and implementing a part of this product at a time
and gradually completing it. Each phase of design and implementation is called an iteration.

Using an iterative approach allows development work to be initiated before the requirements
are fully clarified. All methods and techniques may not be complete in the early stage of the
project. Therefore, iterative method is needed to perform a new round of iteration to refine

- 3 -

the target and optimize the program after searching literature and getting guidance from the
instructor. Under the guarantee of the original software established at the beginning, the
early test data can be obtained through continuous testing and integration to make timely
judgments on the progress of the current development, and to summarize the success of
each stage. In this way, we will decide on the development strategy and improvement
direction of the next stage.

The schedule for this project begin form the end of April up to the end of August. The Gantt
chart displayed below(Figure1.1) illustrates four main stages are split for the whole project.
The key task and aim for the first stage is to implementing a playable game for Samurai,
which include the background research and game programming. This stage is expected to
be completed in approximately 4 weeks in total.

The second stage is for implementing AI agent for the programme of Samurai, which also
including the background research and programming tasks. This stage is the key stage for
this project, hence it will take up the most of time to finish, about 5 weeks.

The third stage is aim to realize different vision of AI agents which will have different
performance with various algorithms, and then the performance will be tested as well in this
stage. Therefore, it may takes 4 weeks in total.

The final stage contains testing task with human players, which is a key point to prove that
the project is work and significative.

Figure 1.1 Project schedule

- 4 -

Chapter 2
Background Research

Before directly pushing the project, it is necessary to have a deep understanding of how to
achieve the goals of the project, therefore I need to investigate and research related fields to
expand my knowledge base. Although some methods and techniques may not be fully
applied in the project, background research still can benefit to avoid aimless or redundant
research. In addition, with the support of good background knowledge, it is of great help to
accelerate development speed and enhance the understanding of the problem. Therefore, in
this chapter, I will discuss some background information about Game theory and useful
Artificial Intelligence techniques for games, and also will mention some understanding and
discussion of the game rules of Samurai, which will help me achieve the goals of the project
in the most sensible way.

2.1 Game theory

Game theory refers to the study of corresponding strategic decision making under specific
conditions in the game where multiple individuals or teams involved consider heavily on the
strategies made by other contributors or partners.It considers the predicted behavior and
actual behavior of individuals and parties in games for studying optimization strategies, for
example, Biologists use Game theory to understand and predict certain outcomes of
evolution. As a branch of applied mathematics, Game theory is also widely being used in
politics, economics, international relations, as well as in computer science and strategy
games[5].

2.1.1 Terminology

So far I have not mention anything yet about the compositions of the game, and to figure
these out I need to define some concepts about these components, which will also benefit to
me describe them later. In addition, using defined terminology can disambiguate ambiguous
terms, for example, the word "play" may represent an one-step operation of a player in
everyday language, which may be confused with the word "move". Therefore it's important to
define the terms of the components in the game for both the writers and the readers.

Terminology 1. Game

A game is described by a set of rules.

- 5 -

Terminology 2. Play

A play is a particular completed instance of a game, which strict follows the rules of the
game until the game is end.

Terminology 3. State

A state within a game describes an temporary allocation and situation of all the existing
components.

Terminology 4. Move

A move is a decision made according to a current state, considering multiple elements.

Terminology 5. Strategy

A strategy is a plan that lead the player to decide a move.

Terminology 6. Outcome

An outcome is the consequence which produced by a move, and lead to another particular
state.

Terminology 7. payoff

A payoff is the reward produced by the outcome.

Terminology 8. Rational behavior

A rational behavior is a player has a strategy which tries to maximize his payoff with
considerations of opponents’ possible strategies.

2.1.2 Game Types

Game theory defines a range of methods to distinguish between different categories of
games, which allows us to judge a type of game and find the appropriate strategy model to
build. A reasonable model will simplify the difficulty of planning strategies and give direction
and basis for choosing AI algorithms and technologies. So I will discuss some of the game
categories that might be applicable to this project.

Zero-Sum and Non-Zero-Sum Games

Zero-sum game is a concept in Game theory means that under strict competition, the gains
of one player must equal to the losses of the other players, and the sum of the gains and
losses of all players in the game will always be "zero"[6]. For example, in a 2-player game, if
player one gains the positive payoff with value 5, then player two will take the negative one
with value -5(In the game more than 2 players, the lost players will split these negative

- 6 -

payoff. In such games, there is no possibility of cooperation, which means if there has one
player get advantage in games while there must adversely have other players suffer from the
disadvantage.

N-Player Games

The difference in players with in a game greatly affects the construction of game
strategies[7]. For 1-player games, the player do not need to consider other obstacles of
people and interference to them. Therefore, when the player plan a strategy, he merely need
to choose the situation that is most beneficial to himself in the current state to maximize his
own payoff.

However, when there is a second player to join the game, situation will become complex.
First of all, players can not only consider to maximize their own payoff, but also may
consider how to prevent opponents from harming them or consider how to hinder their
opponents from easily gaining benefits. In this case, the strategy of players will become
complicated and the factors to be considered will increase accordingly with difficulty of the
game rules.

When the player is more than just 2 players(n>=3), the difficulty of developing a strategy will
increase non-linearly according to the number of players. Meanwhile, players probably also
need to consider who is the most tricky opponent in the current state and who will able to be
a temporary ally of the players. Briefly, if there are more opponents standing on the opposite
side of the player, the more struggled the player is to make a strategy, as well as to regard
more factors.

Perfect and Imperfect Information Games

Perfect information games means that the players know all the current and previously
occurring states, although it is not possible to know what the player might to do for next
state[8]. For example, Chess is a typical type of game with perfect information, in which both
players can have complete awareness of every step of the occurred state.

In contrast, imperfect information games means that the players can not achieve full
information about current or previous state. For example, Poker is a kind of imperfect
information game cause the player cannot know hands of his opponents.

- 7 -

Cooperative and Non-Cooperative Games

Cooperative games refers to the game in which two or more players have the same interests
and goals allying with each other to play against other alliances[9]. These alliances are
certainly allowed by the rules of the game, such as signing contracts, and sometimes these
contracts probably are enforced by the rules of the game. Members of the alliance will play a
game for the same goal with different strategies and payoffs, but winners will receive the
same payoff. Most of cooperative games are played with more than four players, but
occasionally they can be 3-player games(although this is unfair to one player). However,
cooperative games can definitely not be in form of a one-player game cause it is pointless to
give opponent a hand to win a game.

Although a player might be able to reap benefits quickly with the help of an ally, there also
has unpredictable risk, such as the ally could betray at any time so that he can claim payoff
alone (payoff will be double). However, there is no such issue in non-cooperative games,
where each player has an individual strategy and goal.

Deterministic and Stochastic Games

Players can predict the outcome completely with each state within Deterministic game,
cause the players can receives perfect information, which allows to predict any action his
opponent will take with each state[10]. For example, In Chess, players can fully develop
strategies through one state or a series of action from their opponents. Although, in reality
humans can successfully search all the possible outcome for each state in naive games,
such as Tic Tac Toe, the sequential search space complexity for games, like Chess, is
impossible.

In comparison, Stochastic Games often involve random factors, which makes achieving
perfect information is unimaginative for players. For example, Poker, which players can not
have knowledge of the hand of his opponent, so he can not build a definite coping strategy.
Hence when we dealing with these types of games, we have to include randomness into our
strategy. However, not all the imperfect information games are stochastic games, some of
them can still be judged by a state.

Sequential and Simultaneous Games

In sequential games, only one player can have a state or a series of actions per turn, and
players turn will alternate on a sequential basis (e.g. Monopoly). In this form of games, the
strategy of player is based on the previous state and the current state of opponent cause the
player can access occurred information. Although this type of game certainly can be

http://dict.youdao.com/w/unimaginative/

- 8 -

imperfect information games, players can more or less judge the next state strategy based
on what they can aware for now.

However, in simultaneous games, each player is able to do a state in the same round and
these states are concurrent (e.g. Uno). Therefore, in such games, it is difficult for players to
make coping strategies based on the state of their opponents. It is obvious that such games
belong to imperfect information games, so it is difficult to implement corresponding strategies
when there is little information about opponents.

In addition, the representation forms of these two types of games in the digital version are
also quite distinguishing. Sequential games are commonly represented by game trees, while
simultaneous games are more likely constructed by payoff matrices.

2.1.3 Game Strategies

There are two main types of strategies: pure and mixed strategy[11]. A pure strategy is to
select the pre-established strategy to act according to the achieved information, which
means, in each state, the player will make a fixed response state based on the current
information. More specific, a pure strategy is a group of strategies that have been formulated,
and player will select the one of the strategies from the set that have been designed
according to different situations. When the situation is suitable for a particular strategy, then
only that strategy can be selected with a possible value of 1, which means that other
strategy will impossible be implemented.

A mixed strategy has randomness. Unlike a pure strategy, which will use a fixed strategy to
deal with one or several states, a mixed strategy will determine the probability of each
strategy implementation according to the current state. The total probability of each strategy
will be equal to 1(e.g. strategy1 =0.3, strategy2= 0.5 and strategy3 =0.2), then player can
randomly pick one of these different strategies based on probability.

In addition, a pure strategy can be understood as a special case of a mixed strategy, where
one strategy has a probability of 1 and the other strategies have a probability of 0(although
this is the rare case).

According to the process mode of the two strategies, it is obvious mixed strategy is more
effective and reasonable. In the case of Rock-Paper-Scissors, when an opponent chooses a
Rock on the previous round, the pure strategy will pick the strategy to beat Rock from the
strategy group (select the Paper). This makes it easy for the opponent to predict what the
next state of the player is going to be, which would be very silly. Therefore, if a mixed
strategy is used for improving this, though the chances of a Paper state will be greater than
Rock and Scissors, the other two are still possible to be played, which makes it difficult for
the opponent to predict next state of player.

- 9 -

2.1.4 Game Representations

As mentioned, a game is composed of different elements, such as states and payoffs, so it is
important to find some reasonable and efficient models to represent these elements in a
game. I will discuss some common game representations according to different types of
games.

Normal Form

When a game is desired to be represented, a reasonable representation model normally will
be chosen by the type of the game. The most common method to determine the appropriate
model for a game is by judging whether it is a simultaneous game or a sequential game. If it
is the former, then Normal Form will be the best choice. Normal Form will be represented in
an N-dimensional form (N = the number of players), containing every state that each player
can take and corresponding payoffs produced by states of other players, so it will be
combinations of all states of players. For example, the “(1,1)” in the first upper left grid
represents that when player 1 chooses the first state and player 2 chooses the first state at
the same time, player 1 will get a payoff with value 1 and player 2 will get a payoff with value
1 as well(Figure2.1).

Figure 2.1 An example of Normal Form in a 2-player game

- 10 -

Extensive Form

For sequential games, a state or a series of states is executed in succession, so Extensive
Form is used instead to represent. A game tree is the best representative of Extensive Form,
which uses nodes and branches on behalf of a entire game with all possible situations. In a
game tree, each node denotes a specific state and a branch represents a possible game
development trend. More specific, a game tree has an initial node, also known as the root of
the tree, which not only can be the start of the game but also can be the current state of the
ongoing game. Nodes in each layer are only connected to nodes in the upper and lower
layers, and the last layer of the entire tree is usually called leaves, which also represents the
end of the game or the end of the prediction. The values of such leaves often contains
payoffs that can be achieved by a player according to the root combining with a series of
states among all players.

Figure 2.2 An example of extensive form

2.2 Artificial Intelligence Techniques

In order to implement an Artificial Intelligence for a game, searching and understanding of
the existing Artificial Intelligence techniques is necessary. Since there are numerous AI
techniques suitable for different types of areas, filtering some of the technologies and focus
on the ones that are more specific used in games, is deserved and meaningful.

- 11 -

2.2.1 Heuristic state Evaluation

Heuristic state Evaluation are normally used to find an approximations solution of a problem
that may not be optimal and perfect[12]. When some complex problems are faced, it might
be extremely time wasted to search the optimal solution for one state by scanning all the
schemes, while the heuristic algorithm can achieve a value approximating to the optimal
solution in the case of time limitation. In order to obtain this approximate optimal solution,
heuristic algorithm will evaluate each possible move in the current state by using different
game elements, so that there is no need to conduct a complete search for the complete
game process.

There is a good example to explain why to use Heuristic state Evaluation instead of full
searching. In game Go, to obtain the optimal state for the current state, entire possible
development directions of the game should be searched via Game Three until the end of the
game. Although this is possible for computers dealing with numerous calculation, it is still
cost massive time. In the reality rules of Go, the consideration time is limited, so the heuristic
algorithm take its advantage and even much better when in the case of focusing more on
efficiency rather than the accuracy.

Generally, the accuracy of the heuristic algorithm is associated with the state evaluation
equation which is normally consisted by infinite figure functions. These functions denote the
gains(which can be positive as well as negative) on different game elements according to
each move the player can play under current state. The general form of heuristic algorithm is
as follows:

Eval(s) represents the heuristic values obtained by a specific move under the current state.
Every possible move will have a individual heuristic value, and these values are defined by
different figure functions(f1, f2, ... fn) which will have their own weight(w1, w2, ... w3). For
example, in classic game Chess, a figure function can be designed like follows:

Moreover, weights will determine which game elements will have a more important impact
on the overall heuristic. In exploring a suitable heuristic for a game, we will not only design
different elements for consideration, but also test the performance of heuristic functions by
adjusting weights.

By calculating the heuristic value of each move under the current state, an approximate
optimal solution under the current state can be obtained. The closer that solution is to the
optimal, the more figure functions and time the heuristic algorithm will cost. Therefore, when

http://www.youdao.com/w/efficiency/

- 12 -

designing a heuristic algorithm, not only the trade-off of the weights between different figure
functions need to be regarded, but also the trade-off between accuracy and time need to be
took into consideration.

2.2.2 Minimax Algorithm

Regardless of the game type, most of basic board games contains similar essence, such as
Go and Chess. So there is a common algorithm for compiling any human-computer game,
and Minimax Algorithm is the most common and well-known one.

Minimax Algorithm is a pessimistic algorithm that assumes that each move of the opponent
will choose the move that is most able to prevent the player from winning under the current
state, while player will search for the best move under the worst state created by the
opponent[13]. Briefly, the opponent has perfect decision-making ability, every move he made
is the best move, and the algorithm will allow us to minimize our losses in this case.

Minimax Algorithm is often used for games that two players alternate make their moves (e.g.
Chess and Tic Tac Toe), which also be classified as sequential games. Following picture is a
example of Minimax Algorithm for Tic Tac Toe.

Figure 2.3 Minimax Algorithm for Tic Tac Toe

Minimax algorithm is the basis algorithm of the games which strategy based on searching
the possible move. The solution of Minimax usually may not be the theoretical optimal
solution, because the Minimax algorithm assumes that opponent can select the best move at
his round. In fact, the opponent does not exactly behave like that in most of the case,
therefore the player can always fully control the initiative. To be more specific,if the opponent

http://dict.youdao.com/w/strategy/

- 13 -

chooses the most perfect move as assumed in each state, the player can still achieve the
predicted minimum loss outcome. However, if the opponent miss the best move, the player
can achieve a better outcome than the worst-case scenario predicted. The general
implementation of Minimax Algorithm is as follow:

Figure 2.4 Pseudo-code for general Minimax Algorithm

2.2.4 Expectiminimax

In the stochastic games, Minimax algorithm is difficult to be implemented, because there are
many uncertain game factors leading to the inability to predict moves of other opponents,
such as the hands of opponents in the card game. Therefore, Expectiminimax algorithm can
be used to add a probability to each move[14]. For example, if the hand of opponents are
drawn at random from 20 cards, the draw probability of each card can be assumed as 1/20,
and that probability will increase if there are same card in 20 cards. When an move of an
opponent are being predicted, probabilities of each card that is being hold in the opponent
hand will be taken into account. That is to say, Expectiminimax algorithm is roughly the
same as Minimax algorithm, which alternate Min and Max approach to get the best value for
current root, but the difference is that each node in Min and Max state is added a probability
value to the original value corresponding to stochastic factors in the game.

2.2.5 Alph-beta pruning

For games with larger board and complex rules, a game tree using minimax algorithm will
be extremely large, which means calculate all the nodes is very expensive. Therefore, Alph-

- 14 -

beta pruning can be used as an algorithm for decreasing branches of a game tree[13]. The
time complexity of a game tree can be represented as O(bm), where b represents the
average number of branches on each level, and m represents the maximum depth of the
tree. This complexity can be maximum reduced to O(bm / 2) by using alpha-beta pruning [15].

2.3 Samurai

As mentioned before, some features of Samurai led me to choose it as the research object,
such as game complexity. Before actually implementing a digital version of Samurai, I have
to study the details of Samurai, understand its rules and game components.

2.3.1 Setup

The main loop of Samurai is the same as regular board games in which two or more players
alternately drop pieces on a given board.

Board Setup

However, the board of Samurai adopts a hexagonal grid board(Figure2.5), which is pretty
different from the grid board normally used by most board games. Meanwhile, Samurai
holds different sizes of boards depending on the number of players(maximum 4). The
smallest board can be played by two players, while the largest board can be played by a
total of four players.

Each hexagon on the board is called a tile, which is the main place for players to set their
pieces. Unlike the traditional Chess, in which every position is equal, tiles in board of
Samurai are divided into three categories:

• Land Tiles(e.g. the blue box in Figure2.5).
• Sea Tiles(e.g. the green box in Figure2.5).
• Figure Tiles(e.g. the red box in Figure2.5).

- 15 -

Figure 2.5 An example of 2-player board of Samurai, and the blue box in the picture shows
a land tiles; the red box shows a figure tile; the green box shows a sea tile.

Among these three types,land tiles are the main territory that players fight for, which is the
place where any piece can be placed except ship pieces, while sea tiles are the place
specially for ship pieces. The remain one is the most special one which is the scoring point
of the Samurai. Each figure tile has its own type and score, and can be roughly divided into
three types: 1-figure type, 2-figure type and 3-figure type. The functions of these different
figure tiles will be detailed in the rules of the game. So far, it is only necessary to know that
they are a special scoring point and cannot be placed by any piece.

Pieces Setup

In Samurai, each player has a total of 20 different pieces, which make up the a individual
piece deck of a player. Players are not allowed to place any piece in the deck, and are
restricted to picking the pieces they want to place from the hand. The hand of each player
will hold 5 pieces, which are randomly selected from the their own deck. Although each
player has a separate set of pieces, the 20 pieces in their individual deck is extremely the
same. There have totally 20 types of piece in Samurai, which are as follows:

• 1x 2-point Buddha
• 1x 3-point Buddha
• 1x 4-point Buddha
• 1x 2-point Helmet

- 16 -

• 1x 3-point Helmet
• 1x 4-point Helmet
• 1x 2-point Rice
• 1x 3-point Rice
• 1x 4-point Rice
• 2x 1-point Samurai
• 2x 2-point Samurai
• 1x 3-point Samurai
• 2x 1-point Ship
• 1x 2-point Ship
• 1x 1-point Ronin
• 1x Figure Exchange
• 1x Piece Exchange

The pieces have different function to capture the specific figure tile with particular points. For
example, 3-Buddha, it can capture the figure tile which contains a Buddha figure with 3
points(detail rules for capturing and detail function of each piece will discuss in 2.3.3 Scoring
and Capturing).

Figure 2.6 A entire set of pieces for each player.

Figures Setup

Each figure tile in Samurai is special, because 1-3 figures are placed on each figure tile,
which the number of figures is determined according to the number of buildings displayed in
different figure tiles on the board. For example, in Figure 2.5, the figure tile in the red box
contains three figures, and these figures are also points to be scored in the game. In
Samurai, the main purpose of the player is to fight for these different figures(the method of
capturing and the conditions of winning will be described later). Surely, figure also contains
different types, dividing into three classifications: Rice, Helmet and Buddha, and each figure
exist on the board with the same numbers at the beginning(e.g. 7 for 2-player game)

- 17 -

Meanwhile, Samurai stipulates that these figures tiles, which can be placed in multiple
figures, can not contain the same kind of figures. For example, the figure tile(the red box in
Figure 2.5) just can be placed with 1 Rice, 1 Helmet and 1 Buddha(Figure 2.7).

Figure 2.7 A 3-buliding figure tile with three different figures

2.3.2 Rules

At the beginning of the game, each player will randomly draw five pieces from their deck,
and they will not be able to know their remaining pieces in the deck and hands and deck of
their opponents . Players take turns placing their own pieces on the board, but players can
only choose playable empty tiles as their decision. When a player finishes his turn, that
player needs to draw some pieces from his deck to make sure he has five pieces in his hand.
However, if the player does not have enough pieces to fill his hand, he will keep the current
pieces.

In placing process, it is stipulated that Ship pieces can only be placed in sea tiles and other
pieces can only be placed in land tiles, and figure tiles as special tiles for scoring can not be
set in any pieces. In addition, there are certain rules on the type and number of pieces
players can play in each turn. First of all, apart from the different functions of the 20 pieces,
they can also be divided into two categories: one is called character pieces, which can be
placed in any number in a round; The other is the ordinary pieces, which can merely be
placed one in the same turn. Ship, Ronin, Token exchange and Piece exchange pieces are
all belong to the former, while Rice, Helmet, Buddha and Samurai pieces are in the latter
classification.

To sum up, all the players take turns placing pieces according to the above rules until either
winning condition is met (will be described in winning state) or until the there is no figure to
be captured.

- 18 -

2.3.3 Scoring and Capture

One important concept called “capture” in Samurai is that when the neighbor of the figure
tiles is placed with the same type of piece as the figures in the figure tiles, then the figure
tiles are captured by the player with a certain point. For example, when a 3-point Rice chess
piece is placed on the neighbor of a figure tile containing a Rice figure, the Rice figure of the
figure tile will be occupied by the player. And if there is another Buddha figure in the figure
tile, the Rice piece does not have any effect on the capturing Buddha (player point in this
figure tile: Rice = 3, Buddha = 0)

In Samurai, in order to win the game, player focus on getting as many figures as possible,
but how to know a figure has been captured by a player? Remember we said that figure tiles
are special scoring tiles, so when a figure tiles is “completely captured”, it means that one or
more players can get “scoring”. “Completely captured” means when all the land tile
neighbors of this figure tiles has been placed(Figure 2.8), and then captured points of each
player on the current figure tile is calculated. The player who achieve the highest points will
get the score of corresponding figures from the current figure tile, and If there are multiple
figures in the figure tile, the scores will be calculated separately according to the types of
each figure. However, if the players get the same point on a figure, that will be tied and no
one can get score from that figure.

The score of a player can split into 3 part, one is for Rice score, one is for Helmet score, and
the remain is for Buddha score. Therefore when a player get a figure , it will get the a
corresponding score at one of the three, depending on the type of the captured figure.

Figure 2.8 A “Completed Captured” figure tile

2.3.4 Winning Conditions

As mentioned, in Samurai, each player gets one score for each captured figure. In the end,
however, winner decision for Samurai was not to compare the total number of figures

- 19 -

players captured, but to compare who got the most overall scores which just has three points:
one for Rice, one for Helmet and one for Buddha. For example,in a 2-player game, Rice,
Helmet and Buddha figure separately have seven on the board at the start of the game.
Player 1 will win a point in the overall score if he capture more Rice, helmet or Buddha
figures than player 2. Finally, winner will be decided via comparing overall score of two
players. However, rare cases will happen in which the overall score of two players is
equivalent(e.g. Rice is won by player 1, Helmet by player 2, Buddha is not won by anyone).
In this case, the total number of figures will be the additional factor to decide the winner.

2.3.5 Scope of Project

In order to ensure the successful completion of the project within the limited time and not to
waste most of the time on game representation and game progress implementation, it is
necessary to explain the main game mode to be implemented and simplify some
complicated components, such as the number of players, the rules of game.

Samurai can have different number of players due to the different number of participants, the
board will change accordingly. If all the boards are taken into consideration, the game
presentation will take a unpredictable part of entire project, which will be meaningless and
discursive. In addition, in the AI implementation stage, the AI agent will be confronted with
multiple players, which will make the difficulty of AI implementation increasing rapidly with
the people number increment. Therefore 2-player game is the best choice cause it is also as
the same as other classic and fully studied board games.

Moreover, Samurai has different game modes. In different game modes, the initial state of
the game and the conditions of final victory judgment will be changed. If all the game modes
are taken into account, it will be difficult to complete in a limited time. On the other hand, the
changes of these game modes will not be particularly big, so it is a good idea to select a
popular game mode to explore. The selected game mode is called Domination mode, which
has already been mainly described above.

2.3.6 Approach

During the process of implementing artificial player for Samurai, two stages are desired to be
divided into: Using Heuristic Algorithm to build an artificial player; Using Minimax Algorithm
to build an artificial player.

In the first stage, the Heuristic state Evaluation method will be used to calculate the best
move that can be made in the current state by combining different game components.
Heuristic Algorithm are often applied in perfect information games, where the previous state

- 20 -

of the game can be completed achieved. Although Samurai is defined as an imperfect
information game due to the unaware hands of other players, the method to decide the best
move by calculating the values of all possible moves within the current state can be still
applicable to Samurai. Besides, by experimenting different heuristic state evaluation
functions, such as modifying weight parameters and adding different game elements into the
function, the performance of AI based on Heuristic Algorithm is worth expecting.

For the second stage, in order to further improve the performance of AI, I will probably
combine Minimax algorithm with Heuristic Algorithm. Through background research, it can
be known that Minimax algorithm will make some "predictions" of the game, which means
the algorithm will conduct a n-play look-forward on the current state. To be specific, it will
pick the best move at present state under the assumption that the opponent may make the
most unfavorable move to player. In this case, the Minimax algorithm is more reasonable
and logical to select instead of to use optimal heuristic algorithm with no prediction and
judging by limited information.

In brief, different heuristics state evaluation functions will be compared in the initial stage,
and then some of heuristic equations which has better performance, will be selected and
applied to the Minimax Algorithm as well as exploring performance gaps between with and
without Minimax Algorithm. In addition, the depth of look-forward will also be discussed by
comparing the winning rate with the performance to select a appropriate depth limitation and
apply it to the final AI agent solution.

2.4 Summary

Through the background research, Samurai can be classified as a competitive, sequential
and stochastic game with imperfect information, hence Minimax and Heuristic Algorithms are
generally suitable for implementing an artificial player.

• Zero-sum: Each figure is captured by a player is considered as a disadvantage to
other players.

• 2-player: In this project, merely the 2-player situation will be considered.
• Competitive: Players compete to captured the limited figures on the board.
• Sequential: Players take turns setting pieces with visible previous state.
• Imperfect information: Hands of opponents is unaware for the other players within a

particular state.
• Stochastic: Hands of each player is totally random,which can not be certainly

predicted.

- 21 -

Chapter 3
Game Implementation

Before implementing an artificial player, It is necessary to initially build a digital version of
Samurai as a testing platform for artificial players. This contains a suitable Game design for
game components, which needs, for example, first of all, represent some game elements in
the programme in a reasonable and effective method, such as the board, hands and
pieces(mentioned in section 2.3.1 Setup). And then, integrating these elements and applying
them to with the game rules and loop which mentioned in the section 2.3.2, section 2.3.3 and
section 2.3.4 , which will ultimately form to a complete game process.

Besides, a suitable implementation language has to be selected to complete the programme,
and the design of classes is strictly related to the picked language. Therefore, the discussion
of language, function of each class and relationships between classes is included in this
chapter.

Last but not the least, artificial player is desired to confront players so that interface is
wanted to describe the process and state of the game which players can get the current
information of the game. In this chapter, I will discuss some of the considerations I took into
account when designing interfaces and the compromises I made when meeting some issues.

3.1 Language

Since this project is aim to construct an exploratory software, which the requirements are not
as strict as commercial one, so that almost all mainstream languages can be used, such as
C, C++, Java and so on. If the software is commercial, it is not doubt to consider improving
the performance of the software as much as possible, because the devices of user are
extremely different. In order to satisfy all the mainstream devices that can successful run the
software, lower-level languages such as C and C++ are likely to be the first choice owe to
the fully programming freedom that the language gives to the programmers For example, in
C and C++, programmers can manually allocate memory and garbage collection, which
improves efficiency cause automatic allocation generally consumes more time and
resources. It is similar that Java can also improve its efficiency though it does not have as
many degrees of freedom as C and C++.

However, considering the limitation of time, the efficiency of software will not be the most
focusing factor for this project, and the capacity of this software is not like that huge to

- 22 -

consider the optimization of efficiency. Therefore, Python will be chosen which is a simple
and friendly programming language.

In addition to the simplicity of the language, Python has a large number of third-party
packages that allow any function to be easily implemented in a short period of time when it is
uncertain what functions to implement and what technologies to utilize. Meanwhile, methods
of Python for configuring new environments and importing packages are relatively simple
compared to other languages.

This project will design some interfaces though most of them is text interfaces(the reason will
be explained in section 3.3.2). Python still be a perfect choice, cause it also has the support
of graphical interface, such as PyQt5, so the possibility of further optimizing for UI in future
research can be achieved in Python.

Finally, the last reason why I choose Python is that it is one of the most popular and
mainstream languages in the field of Artificial Intelligence, because it is supported by a large
number of Artificial Intelligence algorithm packages, which improve the possibility of testing
different Artificial Intelligence(the implementations will be very efficient) in this software in the
future research.

3.2 Workflow

When designing a game, the workflow of a program needs to be planned and analyzed
before implementing in order to improve efficiency and clear the idea, especially when the
flow is not naive.

Therefore, through the understanding of Samurai rules and main game loop, Unified
Modeling Language(UML) is able to be used to represent the flow of the entire game(Figure
3.1), which is a straight forward and explicit method.

http://www.youdao.com/w/straight%20forward/javascript:void(0);

- 23 -

Figure 3.1 A brief workflow of Samurai

- 24 -

3.3 Game Design

This section will introduce how some important main game functions and representations are
implemented during the programming of Samurai, such as the representation of the board
and the judgment of the game end.

3.3.1 Representation of Game Components

Board Representation

The board representation of Samurai is pretty unique compared with other traditional board
games, because in traditional board games such as Chess, the board is generally a
rectangular grid. This means that simple two-dimensional coordinates can describe these
board directly, and corresponding proximity relations can be calculated using two-
dimensional coordinate systems. For example, the right neighbors of (1,1) can be simply
figure out with adding 1 to x coordinate. However, the board of Samurai belongs to the
hexagonal grid. Although two-dimensional still can be applied on the hexagonal board, the
detailed representation method of hexagonal grid has slightly different with the rectangle one.
Therefore the expression of x coordinate and y coordinate need to be adjusted. Figure 3.2
compared the general rectangle coordinate expression with hexagonal coordinate
expression.

Figure 3.2 Comparison of rectangular girds and hexagonal grids representation

Besides, this layout leads to more complex neighbor calculations than the rectangle grid,
because each grid has six neighbors instead of four and each row and column is misaligned
Therefore, odd and even rows need to be distinguished, and they will have different neighbor
calculation methods, as shown in Figure 3.3.

- 25 -

Figure 3.3 Neighbors calculation Algorithm for odd row and even row

In addition to representing the board in two-dimensional coordinates, there are other
elements that need to be represented, such as the type of each tile and whether the tile is
occupied by the pieces. These elements can be simply combined with the x and y
coordinates of each tile to form a list, and the elements in the list are different form type to
type. (Figure 3.4).

Figure 3.4 Examples of board representation for different types of tile

The meanings of number for each element in the array:

• Coordinate: Special (x,y) coordinate for each tile.
• Place state: No one takes current tile with value 0; Player1 takes current tile with

value 1; Player2 takes current tile with value 2.
• Rice: The Rice captured points get by a player.
• Helmet: The Helmet captured points get by a player.
• Buddha: The Buddha captured points get by a player.

- 26 -

• Update state: If this tile is placed with a new piece, update state will be 1 to wait for
updating; Value 0 means not waiting for update.

• Player1 Rice: The Rice captured points for player one on current figure tile.
• Player1 Helmet: The Helmet captured points for player one on current figure tile.
• Player1 Buddha: The Buddha captured points for player one on current figure tile.
• Player2 Rice: The Rice captured points for player one on current figure tile.
• Player2 Helmet: The Helmet captured points for player one on current figure tile.
• Player2 Buddha: The Buddha captured points for player one on current figure tile.
• Tile index: Each tile has an unique index.

Figure 3.5 Coordinate representations of each tile

Piece Representation

The representation of the pieces in the game is similar to the board, which uses a one-
dimensional array to express a particular piece, as shown in the figure.

Figure 3.6 An example of a particular piece representation

- 27 -

The meanings of number for each element in the array:
• Piece points: Captured points current piece can add on the figure tiles.
• Piece type: Value 0 represents Rice type pieces; Value 1 represents Helmet type

pieces; Value 2 represents Buddha type pieces; Value 3 represents Samurai type
pieces; Value 4 represents Ship type pieces; Value 5 represents Ronin type
pieces.

• Character: If current piece is a character piece: 0 means no; 1 means yes.

3.3.2 Interface

Due to time constraints, I would consider constructing an text-based interface instead of
using a graphic interface. However, it is difficult for Samurai to use the text information to
represent the current information of the board. For example, how to represent the position
and relationship between the two tiles, and if a tile is placed by a piece is currently placed,
how to represent the placed piece information about that tile. These issues were hardly to be
displayed with merely text output. To solve this, in a limited time, I decided to use the
combination of the real board and a text-based interface to display all the information of the
current state. The representation of each tiles would be displayed in the text-based
interface(Figure 3.7). By providing the player with a photo of a marked Samurai board with
two-dimensional coordinates(Figure 3.5), and the x and y coordinate information in the
representation of the board(Figure 3.4) displayed in the test-based interface, it was possible
to know which tiles have been placed by which pieces. At the same time, the player can also
input the two-dimensional coordinates of the tile that he wants to place(Figure 3.8).
Therefore, the player can successfully compete against with a artificial player. Besides, the
information of current hand would also be displayed using the representation method
mentioned in the section 3.3.1(Figure 3.6), to show the current hand of the play(Figure 3.9).

- 28 -

Figure 3.7 An example of an text-based interface when in the artificial player round; The text
in red box shows current state of each tiles

Figure 3.8 An example of an text-based interface when in the human player round

- 29 -

Figure 3.9 An example of an text-based interface of plays hand display

- 30 -

Chapter 4
Artificial Intelligence Player Implementation

After the implementation of the game, the next step is to test and analyze different AI
strategies on the game platform. In this chapter, I will gradually describe the process of
building AI, including the establishment of basic AI strategies, the establishment of improving
AI strategies, and the adjustment of parameters. And through the comparison of different AI
strategies,the best solution will be found, and finally will be used for testing.

4.1 Basic strategies

Before applying Heuristic state Evaluation and Minimax Algorithm, basic artificial players that
only use naive strategies were constructed to test the workflow of the game and to be
regarded as reference examples for improving artificial players. These basic strategies take
no or just a little information of current state into account, as they were intended to imitate
the behavior of in players who have no experience at all with Samurai.

4.1.1 Random Selection

Assuming that a human player has never played Samurai and even do not completely
understand the rules of the game, the simplest strategy he might take is to randomly place
his pieces on the board. This idea can be used as a simple strategy application on an
artificial, which thinking is irrational.

When an AI takes a completely random approach, it means that it totally ignores any
information in current state, and that the payoff of its next possible move is equal. As
mentioned before, two pieces, “Piece exchange” and “Figure exchange”, were not
considered in this project, so when we implemented this kind of AI, we simply selected a
piece randomly from the hands of artificial player, and then determine whether it was a
“Ship” piece or not. If so, the piece would randomly set on a playable sea tile, otherwise it
would set on a random playable mainland tile.

This might seems useless, but actually it is useful as a baseline reference sample. Because,
in a large number of experiments, random placement can be more general than a specific
strategy, which helps test whether a strategy can compete with all types of players. In the
project, I found that, supported by a large number of experiments, the random approach
could still beat some advanced strategies, while some specific strategies could not.

- 31 -

4.1.2 Greedy Selection

Another basic strategy that can directly improve previous one is to take into account the
most intuitive information on the board and immediately choose the highest payoff from it.
For example, in Samurai, the most intuitive positive payoff is to place the piece that can
achieve the most figure captured points on current state, regardless of how many points the
other player has already taken up and whether there has already got excessive points by his
own. Under this strategy, the artificial player will impatiently throw all the available pieces on
the board without regard of the potential future advantage if keeping some hands. In other
words, this strategy is very rude, which merely considers to maximize the immediate benefits
without considering the possibility of future benefits and interference from opponents.

There are some special pieces in Samurai: “Ship” and “Ronin”, which can be placed in any
number of hands in a turn with low scores. They tend to be played as a decisive role when
needed. Therefore, when I implemented the Greedy selection strategy, two model has been
built. One is the primitive greedy selection strategy, which is to consider all the pieces that
can be placed at present, and place each of them on tiles that can achieve the most figure
captured points. A round boundary was added in the other, which means the situation that
the player “pours” all the playable hands will just happened after a certain number of turns.
While , before the boundary, only one greedy piece will be played.

4.1.3 Summary

Through the above discussion, I have established three basic strategies as baseline and
reference samples.

Basic Strategy 1—Random Selection

Every move is decided fully random.

Basic Strategy 2—Greedy Selection

Each move play entire playable hands on the non-placed tile with highest captured points.

- 32 -

Basic Strategy 3—Greedy Selection with Round Boundary

If the round is before the boundary, only the hand that can get the highest captured points
can be placed; Otherwise, the Greedy Selection without Round Boundary decide a playable
tile.

4.2 Advanced strategies

In the second stage, Heuristic state Evaluation and Minimax algorithm that mentioned above
was used to establish advanced strategies. Basic strategies would used as the baseline to
test performance of different improved strategies, and to determine the best strategy for
Samurai to against a human player.

4.2.1 Heuristic state Evaluation Functions

As mentioned in section 2.2.1, the performance of heuristic function probably affected by
how much useful information for previous and current state is used. These information can
be considered as separate figure functions composing a overall heuristic function. Therefore,
when implementing a heuristic function for an artificial player, I was tried to make it improves
step by step via gradually adding figure functions.

Figure Function 1—Domain

The heuristic function is a formula, which is composed of multiple figure functions according
to intention of strategy, in order to calculate the values of each move and pick the best move
for current state. The design of these figure functions are closely related to the game rules
and information of the previous states. A effective heuristic function normally takes maximum
considerations of all the game factors affecting the trend of the game.

In Samurai, the information of opponent hands is not visible by another player, so when
setting the heuristic function, the domain information that a player can achieve comes from
the state displayed on the board. As mentioned in the greedy decision before, the most
intuitive element that can obviously improve payoff of a player is to place the piece on the tile
that can give maximum captured figure points on its neighbors of figure tile. In other words,
the placed piece need to adjunct to as much as figure tiles that has the same type with the
piece. Therefore, when I designed the first figure function of the heuristic function, the
greedy decision value had been added. However, slight change had to be applied, the first
figure function needs to take into account the existed captured figure points obtained by the
opponent. So the first figure function which also be considered as a domain figure function is
as follows:

- 33 -

Figure Function 2—Keep in hands

Obviously, domain function alone is not enough. As mentioned in section 4.1.3, the
character piece: “Ronin” and “Ship”, which are two pretty special piece in Samurai, lead to
more uncertainty and randomness for the move. As long as the player has “Ronin” or “Ship”
they can release them in any turn or just keep in their hands for waiting better chance.
Therefore, it is also necessary to consider whether these character hands should be kept in
the hand. This is the main idea I would focus on the second figure function . However, for
this project, I decide to simplify the complexity of Keep in hands function, because the
situation of whether you need to keep hand in Samurai is too multifarious. This can lead to
the implementation of this figure function would occupied too much times, so I decided to
just use the same idea of greedy decision with a boundary(section 4.2.1), which determine
whether or not to retain according to the round. However, different from the greedy decision
with boundary which only depends on the number of turns, the artificial players still have the
opportunity to play the pieces at the early stage by combining with other figure functions
when using heuristic function. As with the domain function, I would optimize the strategy
used in the greedy decision with boundary, where the propensity of player to play these
character pieces increases with the number of turns. Keep_in_hand figure function is as
follows:

Among them, value k will have different values according to different hands , and these k
would be optimized in next stage.

Figure Function 3—Score state

If the domain function can be regarded as payoff of the current board information and the
keep_in_hands function as payoff of the hands information, then the last one would need to
calculate payoff of the last important game component: Score. In Samurai, experienced
players will occupy a figure type that he has the most in order to get a large score, and if the
opponent obtains most number of one figure type, the player will be inclined to give up this
type of figure to retain the strength to fight for other types of figure. For example, if player 1
has already achieve four “Buddha” figures, then player 2 should abandon “Buddha” to
compete other types of figures on the board. Since the total number of figures in each

- 34 -

category is only 7, player 1 gets 4 of them, then that means he has won a overall score in
“Buddha” type. In addition, player 1 will drop the battle for ”Buddha” figure to prevent player
2 from getting another type of figure.On the other hand, when player 1 has already achieved
three “Buddha”, he will have a strong desire to compete for an extra on.

In order to achieve this goal, artificial players and opponents will gain a significant negative
value in Score state function when they have 4 of a figure type. And when the player holds a
type of figure closer to 4, then the payoff in the hand that can compete for this figure type will
also be larger. Score state is as follows:

The number_of_achieved_figure in the above represents a specific type of figure, of course,
when there are two figure types, their values will be superimposed. In addition, fixed_number
will be optimized when tuning parameters.

In brief, three advanced can be created, I would display them in the summary(see section
4.2.3)

4.2.2 Minimax Algorithm

As mentioned above, the Heuristic state Evaluation Functions have certain limitations. They
only consider the information available in the current state, and do not predict the behavior of
the opponent. Therefore, the Minimax Algorithm look forward a certain number of moves,
and maximize the own payoff form the worst situation that opponent is assumed to create.

In Samurai, when an artificial player want to predict moves of opponents, he need to know
their hands. However, Samurai is a imperfect information game and stochastic game, hence
it is difficult for a artificial player to predict the next move of opponent when he can not be
sure of the hands of opponents. So a conventional solution for this is to use the
Expectiminimax(see section 3.3.2), that is, set a probability to all the opponent pieces in the
piece pool. The number of a type piece is higher the probability that piece in opponent hands
is higher. In the experiment, I found that when setting the artificial player to predict the 2-step
forward which restrictively calculated the piece in current opponent hands, the Minimax
algorithm had already consumed numerous times(normally 45 minutes). If Expectiminimax
algorithm was used, the number of pieces to be considered increases from 5 to 20 when
predicting the moves of opponents. This means that the permutations and combinations of
all the pieces will be significantly improved, then Expectiminimax algorithm would consume
an unpredictable time. Within the time limitation, I decided to give up the implementation of
the Expectiminimax algorithm. On this basis, the game rules had been simplified to allow the

- 35 -

artificial player to know the hand of opponent, so that the Minimax algorithm can be
executed smoothly.

Besides, the depth limitation(Figure 4.1) was applied for Minimax algorithm cause if the
algorithm predict entire possible game flow the number of branches of Minimax will be
extremely numerous. For example, if the depth limitation is 7, there will have approximately
two billion nodes at the deepest depth.

Figure 4.1 An example of a 3 depth Minimax algorithm

The one solution is to use Alpha-Beta pruning(see section 2.2.5) to eliminate some useless
nodes, but I would not go to implement it in this project due to the time limitation as the
Expectiminimax algorithm.

As mentioned in section 2.2.3, the values of all nodes in the deepest depth in Minimax
algorithm can be calculated by using heuristic algorithm. I would choose the best solution
from the heuristic functions(mentioned in section 4.2.1) to cooperate with Minimax algorithm,
and then test the difference between using Minimax algorithm and without using it. And I
would test the efficiency and performance of the minimax algorithm with different depth limits
in Chapter 5 .

- 36 -

Figure 4.1 An example of a branch of a 3 depth Minimax algorithm for Samurai

4.2.3 Summary

By using the heuristic evaluation function and the Minimax algorithm, four separate
advanced strategies were created that would also be compared to the previous basic
strategies in Chapter 5. The best strategy would be picked in Chapter 5 which would then be
applied on Minimax algorithm meanwhile parameter adjustments that mentioned above
would also be described in Chapter 5.

Below are the outline of the advanced strategies :

- 37 -

Advanced Strategy 1—Heuristic Function with Domain

Each move is decided by the heuristic function as follows:

Advanced Strategy 2—Heuristic Function with Domain and Keep_in_hand

Each move is decided by the heuristic function as follows:

Advanced Strategy 3—Heuristic Function with Domain,Keep_in_hand and Score_state

Each move is decided by the heuristic function as follows:

Advanced Strategy 4—Minimax algorithm with the best Heuristic Function

Each move is decided by the Minimax algorithm and the values of each node is calculate by

the best heuristic evaluation function in advanced strategies1, 2 and 3.

- 38 -

Chapter 5
Testing

In order to determine the final artificial player solution, I would test the performance of all the
strategies that mentioned in the previous chapter. Testing would allow these strategies to
compete against one another by setting different baseline opponents strategies to compare
the performance of different strategies. In addition, before comparing these strategies, as
mentioned above, I would optimize the parameters involved in each of the advanced
strategies, and then taking the best parameter solution for the final strategy comparisons.
Ultimately the best strategy will compete with the human player to test the final performance.

5.1 Tuning Parameters

I will first optimize the parameters that need to be adjusted in each figure function(see
section 4.2.1),such as parameter k , which can be called as internal parameters, and then
optimize the weight parameters of the entire heuristic function(see section 4.2.1), such as w1,
w2 and w3, which can be called as the external parameters.

5.1.1 Internal Parameters in Advanced Strategy 2

In the figure function 2(see section 4.2.1), the value of k should have a different value for
each type of piece, then the k value would be divided into four separate parameters: k1
represents the hold parameter of the normal pieces(e.g. 4-point Rice and 4-point Helmet); k2
represents the hold parameter of the “Samurai’ pieces(e.g. 3-point Samurai); k3 stands for
“Ship” hold parameter(e.g. 2-point Ship); k4 stands for Ronin reserved parameters (eg 1-
point Ronin). I would merely explore the values of k3 and k4, cause normal pieces and
“Samurai” pieces should be placed if there is a suitable position on the field. So it is no
sense to keep them in the hand, and they need to be placed in the early stages to gain an
advantage. On the other hand, if k1 and k2 were also considered for optimization at the
same time, it would be much more difficult to find the optimal solution, which would have to
use Machine Learning or Bio-inspired Algorithms to obtain the optimal solution(see section
6.2). Since the time limitation, i tried to make this optimization be simper and could be
roughly found a local optimal solution. Similarly, if the exploration of Round Boundary was
introduced, the space complexity would also be increased. Therefore, merely two
parameters would be adjusted to roughly find a local optimal solution for figure function 2,
which had already achieve a satisfactory performance, normally from around 78% to 85%

- 39 -

winning rate(see Figure 5.1) The exploration of these parameters could be carried out in the
future development which would be mentioned the methods of optimizing these parameters
in the section 4.2.2 .

Therefore k1 and k2 would be given a fixed value 0, then according to some rough
experiments I would limited the value of k3 and k4 from 0 to 5. Besides, the game usually
ends around 20 rounds, so a fixed value of 10 would be set for the Round Boundary. And
Basic Strategy 2(see section 4.1.3) would be used as baseline strategy to compete with
Advanced Strategy 2.

Test 1 Result

Step size would be 0.5 in the first test to find a brief optimal solution and for each parameter
combination, the game would run 100 times. The test information would like follows:

- k1, k2 = 0

- k3 = 0~5

- k4 = 0~5

- Round Boundary = 10

- Step Size = 0.5

- Iteration = 100

The result is as follows:

Average Winning Percentages(%)(k1,k2=0)

k3 K4=0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0 79 85 75 85 80 84 78 73 79 76 72

0.5 80 81 72 82 77 77 76 79 89 74 77

1 78 82 78 83 78 82 90 86 74 83 83

1.5 79 85 75 78 86 81 80 80 74 83 86

2 84 82 81 80 74 82 82 83 69 87 83

2.5 81 77 78 83 81 82 79 79 82 86 85

3 83 83 84 84 82 83 81 78 83 78 80

3.5 80 79 87 81 82 83 80 84 84 79 77

- 40 -

4 79 79 85 81 79 85 78 83 82 81 88

4.5 78 79 82 79 77 80 83 83 83 83 79

5 78 79 76 78 85 81 81 74 77 79 80

Figure 5.1 The average winning percentages of Advanced Strategy 2 with different k3 and
k4 combinations when competing with Basic Strategy 2.

Test 2 Result

On the basis of the first test I narrowed the scope and the steps of exploration to improve
accuracy. The explore range is as the blue area in Figure 5.1. Step size would be 0.2 in the
second test to find a more specific optimal solution, and for each parameter combination the
game would run 300 times. The test information would like follows:

- k1, k2 = 0

- k3 = 0.7 ~ 1.5

- k4 = 2.5 ~ 3.5

- Round Boundary = 10

- Step Size = 0.2

- Iteration = 300

The result is as follows:

Average Winning Percentages(%)(k1,k2=0)

k3 k4 = 2.5 k4 = 2.7 k4 = 2.9 k4 = 3.1 k4 = 3.3 k4 = 3.5

0.7 81.33 86.67 77.00 73.33 75.67 79.00

0.9 75.33 77.00 79.33 82.00 80.00 81.33

1.1 79.00 80.00 83.00 89.00 76.33 76.33

1.3 81.00 78.67 80.00 84.00 80.33 79.33

1.5 78.67 82.00 85.00 78.66 75.66 78.66

Figure 5.2 The average winning percentages of Advanced Strategy 2 with different k3 and
k4 combinations in a more specific range when competing with Basic Strategy 2.

I thought I need to stop the parameters exploration, because the difference between the
winning percentage had became tiny. Although, through the exploration, I found that if the

- 41 -

exploration continue there would still have 0~2 point increase or decrease in winning rate, it
is not worth with consideration of the time consumption. So the final solution for k3 and k4
are 1.1 and 3.3 separately.

Summary

By exploring, a partial optimal parameter solution for figure function 2 could roughly be
found , as shown below:

k1=0, k2=0, k3=1.1, k4=3.1, Boundary Round=10

5.1.2 External Parameters in Heuristic Function

Then, I would test the external parameters, that is, the weight values of the each figure
function in the entire Heuristic Function. In theory, the domain function(see section 4.2.1)
should have the highest weight in the entire Heuristic Function to guarantee the better
perform cause it is the most direct payoff for players. That means directly getting figure
captured points is more important than keeping hands and considerations of current score.
Therefore I set the weight of the domain with 1, in which case to find the most appropriate
values for w2 and w3, and the weight range for w2 and w3 would be between 0-1.

Moreover, I would change the strategy of opponent from Basic Strategy 2 to Advanced
Strategy 1(see section 4.2.1), cause when Advanced Strategy 2 competed with Basic
Strategy 2 the winning percentages had already be high enough(normally from 87%-95%).
Therefore it is pretty hard to the increasing performance of the changing parameters,
Advanced Strategy 1 as a better opponent would make the improvement more obvious.

Test 1 Result

Step size would be 0.1 in first test to find a brief optimal solution and for each parameter
combination, the game would run 300 times. The test information would like follows:

- w1 = 1

- w2 = 0~1

- w2 = 0~1

- Step Size = 0.2

- Iteration = 300

The result is as follows:

- 42 -

Average Winning Percentages(%)(w1=0)

w2 w3 = 0 w3 = 0.2 w3 = 0.4 w3 = 0.6 w3 = 0.8 w3 = 1

0 63.67 65.33 70.00 78.00 71.33 67.67

0.2 73.33 71.33 82.00 76.33 81.33 72.67

0.4 76.00 86.00 76.33 72.67 69.67 69.33

0.6 63.00 82.00 71.00 76.67 73.33 66.00

0.8 77.00 82.33 82.00 72.33 73.00 64.00

1 75.33 77.67 75.00 70.00 76.33 66.00

Figure 5.3 The average winning percentages of Advanced Strategy 2 with different w2 and
w3 combinations when competing with Advanced Strategy 2.

Test 2 Result

On the basis of the first test I narrowed the scope and the steps of exploration to improve
accuracy. Step size would be 0.04 in the second test to find a more specific optimal solution
and for each parameter combination, the game would run 300 times. The test information
would like follows:

- w1 = 1

- w2 = 0.3~0.5

- w3 = 0.1~0.3

- Step Size = 0.04

- Iteration = 300

The result is as follows:

- 43 -

Average Winning Percentages(%)(w1=0)

w2 w3=0.10 w3 =0.14 w3=0.18 w3=0.22 w3 = 0.26 w4=0.30

0.30 79 73 76 81 85 70

0.34 73 78 73 76 78 73

0.38 82 74 85 87 75 69

0.42 68 76 74 79 73 78

0.46 78 82 78 75 75 78

0.50 85 81 82 80 81 76

Figure 5.4 The average winning percentages of Advanced Strategy 2 with different w2 and
w3 combinations in a more specific range when competing with Advanced Strategy 1.

Summary

By exploring, a partial optimal parameter solution for Heuristic function in Advanced Strategy
3 could roughly be found , as shown below:

w1=1, w2=0.38, w3=0.22

Besides, w2 would also be applied in Advanced Strategy 2.

5.2 Strategy Comparison

After adjusting the internal and external parameters of the Advanced Strategies, all the
strategies are ready to test their performance as an artificial player. As I mentioned earlier, I
would not perform all the strategies to against a human player, because it makes quite time-
consuming and unwise. Obviously, Basic strategies are pretty difficult to against a real
human player hence, in this chapter, I mainly by setting a baseline strategy to compete with
another strategy to test the performance of different strategies. The baseline strategy would
be changed when the performance of the competitive strategy is better.

Besides, the optimal strategy found by experiments would be applied as the Heuristic
function for Minimax algorithm. Finally, by comparing the performance of the best strategy
with Minimax algorithm and the best strategy without Minimax algorithm, it is determined
which strategy would be used in the final stage of the final confrontation with human players.

Three sets of 300 plays would be performed for two strategies comparison, the average
winning percentage would be considered as the judgment criteria.

- 44 -

Figure 5.5 Basic Strategy 1 vs. Basic Strategy 2

Figure 5.6 Basic Strategy 2 vs. Basic Strategy 3

Figure 5.7 Basic Strategy 3 vs. Advance Strategy 1

Figure 5.8 Advance Strategy 1 vs. Advance Strategy 2

- 45 -

Figure 5.9 Advance Strategy 2 vs. Advance Strategy 3

Based on the observation of the above experimental results, simply adding some profit value
to the Basic Strategy 1 could significantly improve the performance of artificial players(Figure
5.5) though this was merely compared to the randomly placed strategy. It proofed that
artificial player began stimulating a experience gamer instead of an non-experienced player.
In addition, the performance of the artificial player was improved slightly from Basic Strategy
2 when it was restricted “pour” all its available hands on the board mindlessly (Figure 5.6).

It could also be found simply from the table that the heuristic evaluation function also has
significant improvement on the artificial player(Figure 5.7), even if just adding a simple
domain figure function. In addition, the experiment proves that, as mentioned before, if all
the game information within the current state was considered as much as possible, the value
given by the heuristic evaluation function would be a greater reference value. Advance
Strategy 3 and Advance Strategy 2 performed better than the Basic Strategies after
Keep_in_hand figure function and Score_state figure function were added respectively. This
was what I expected, and it also proved that the latter two figure functions play an positive
role in Heuristic Function.

5.3 Minimax and Non-Minimax Strategy Comparison

Moreover, I would apply the Heuristic Function in Advance Strategy 3 on Minimax alogrithm.
Different depth limitations would be tested to find the balanced between performance and
efficiency. Merely the odd depth limitation would be tested cause I desire to stop the look-
forward at the move of the artificial player, and it is easy to calculate the the value of leaves
at that depth as well. The test result is as follows:

- 46 -

Figure 5.10 Minimax vs. Non-Minimax with different depth limitations

As can be seen from the above table, Minimax algorithm consumes numerous time, and at
depth of 5, the running time is unpredictable. This is because, in Samurai, when a player has
more than one playable hand, the number of a possible move increases dramatically. In the
depth of 3 , for example, the most leaves situation is that all hands of player 1 and player 2
can be placed on board in one turn, i.e., two players both have one normal piece and four
character piece. In this case, there will be more than 10 million possible moves for 2-step-
look-forward, which lead algorithm to run extremely slowly. Certainly, there are many ways
to solve this situation, such as the Alpha-beta pruning(see section 2.2.5), which can be used
to reduce the branches of tree. However, due to time constraints, I could not implement
these possible solutions, but I would mention them in the future work.

However, within the limited 3 precious plays, it could be predicted that the performance of
the artificial player with Minimax may surpass the Non-Minimax. Besides, as a explanation,
the winning rate of depth 1 merely had 56% because there had no look-forward at all when
the depth is 1, which means it just two same algorithms competed each other

5.4 Human Player Test

Due to the running time of Minimax algorithm, I merely let one participant fight against
Advanced strategy 4(see section 4.2.3) for 2 plays. However, I added Advanced strategy 3
into the experiment of human player testing, although this might make the final result not
meet my expectation. In the testing of Advanced strategy 3, I found two participants. All the
participants can be consider as a low-experienced player, cause they just play with each

- 47 -

other once before stating the test. I had already covered how to pit the player against the
computer (see section 3.3.3), so I would not describe in this section. The experimental
results are as follows:

Figure 5.11 Results of human testing with two strategies

- 48 -

Chapter 6
Conclusion

In this chapter, I would summarize the process of the entire final project and assess whether
the final results meet the original aim and objectives, including discussing shortcomings,
personal reflection and future extending and improving ideas.

6.1 Project Outcomes

The experimental results would be compared with the initial aim and objectives(see section)
to assess the completion of the project and where it needs to be improved. Four major aim
and objectives were created in the early stage of project, so I would review and evaluate
them separately.

1) Produce a playable programme of the board and card game Samurai.

A full-process two-player Samurai was successfully implemented by using Python. When no
human players participate, two artificial players with different strategies would be able to play
the game automatically until the end of the game, and each round of the two players would
be represented by a simple text output. On the other hand, when a human player is playing
against the artificial player, a simple text interface will display the current board state and
receive the commend of the human player. By cooperating with the picture of a real game
board(see section 1.3), the human player can successfully compete with the artificial player.

2) Develop an AI algorithm for playing Samurai.

Artificial players with different strategies were successfully implemented to complete a full-
process of a game, no matter in the situation of competing other artificial players or human
players.

3) Compare different algorithms to find the best AI solution for Samurai

There were 7 different algorithms were successfully built and applied to the game. Through
the competition between different algorithms, an “optimal” algorithm was finally selected.
Although this “optimal” algorithm still had spaces to improve(e.g. numerous running time), its
result is better than other algorithms(see section 5.4).

- 49 -

4) Test the programme and evaluate the performance of AI against human players.

The program was successfully tested on both artificial players and human players. However,
I did not perform all of my strategies on human player testing, cause basic strategies are
hard to really compete with human players. It would be time-consuming and unintentional to
test all the strategies on human players, so that I finally decided to apply the best strategy to
the human player testing. Although the final algorithm may take too much time to run, the
result from only a few plays still shows that the final algorithm performs quite well.

Overall, the experimental results achieved the expected aim, although the running time of
Advanced strategy 4 was unexpected long. Advanced strategy 4, however, performed well in
a few experiments, although it merely beat players who are not an expect for Samurai or
even a novice. In addition, Advanced strategy 3 also has a chance to beat these players with
quick calculations, although they may have trouble to win when they encounter more
experienced players. Anyway, the experimental results met the basic requirements that set
at the beginning, and some methods of expansion and improvement will be discussed in the
section 6.2.

6.2 Personal Reflection

Overall, although the completion of the entire project is challenging, I still enjoyed the whole
process whether on the exploration of the unknown field or the idea communication with the
supervisor. Throughout the project,I learned a variety of AI algorithms that are beyond the
knowledge of the course. Although the process of exploring my own unknown field is difficult,
the results of the final report are satisfactory and positive for me. So I am very honored to be
able to study this topic and learn a lot from it.

However, I still found some weaknesses that need to be improved. First of all, from a
technical perspective, the management and the initial design of the code are obviously
insufficient. At the beginning of the project, there was no preliminary planning and design of
the modules of the code so that repeated modifications were performed during the
implementation of each function, which resulted in a large amount of time wasted. Besides, a
lot of code duplication and too deep depth of loops have caused my code to not satisfy a
good smell code[28]. These might indirectly lead to a slowdown computation time of final
solution, and the difficulty of expanding this project will be greatly improved. This project is a
non-commercial standard project so that I did not spend a lot of time on code construction

http://www.youdao.com/w/weakness/

- 50 -

and refactory. However, in the future projects, the requirements will be greatly improved, so I
still need to learn from this project.

In addition, the ability to manage time also needs improvements. Although the final progress
of the report was completed in the plan, I often found out, during the experiment, that I was
completing a phased goal beyond the designed time at the beginning of the report. This
results in the need to compress the rest of the time to keep the overall progress unaffected,
such as compressing report writing time and human player testing time. In the following
projects, summing up this experience, I will add some flexible time in each stage to ensure
that each part can be completed smoothly and have free time to be adjusted.

In brief, In this project, not only some areas of expertise can be learned, but also some
lessons can be learned on basic skills. These will be very useful to improve in future projects.

6.3 Future Work

Alpha-beta pruning

As mentioned before, the time consuming of Advanced strategy 4 was extremely long due
to the numerous game tree created by Minimax algorithm(see section 4.2.2), Alpha-beta
pruning could be used to reduce the capacity of the game tree and trim the useless
branches to improve the efficiency of the algorithm(see section 2.2.5). This not only benefit
to computation of the program, but also increases the efficiency of the test process.

Improving Heuristic Function

There still had room of improvement for the Heuristic Function in the experiment. The factors
considered by the Heuristic function were still not complete enough. For example, when a
player has a high probability of occupying a figure, he should appropriately abandon
continuing set the high score piece around that figure tile. A more detailed Heuristic function
would further enhance the performance of the artificial player.

Graphic Interface

In the later stage, a graphical interface could be developed to replace the current text
interface, which not only can intuitively represent the current board state, but also make the
user more simple to play with the artificial player.

- 51 -

Turning parameters by Genetic Algorithm

In ssection 5.1, it was mentioned that when there are multiple parameters to be adjusted,
some advanced algorithms are needed. Genetic Algorithm is an excellent choice, which
combines different parameter values with a fitness function to generate mutations and
crossover to find the optimal solution, and this optimal solution can be the global optimal. On
the other hand, Genetic Algorithm also evolves to produce better final solutions by
combining different heuristic functions[16].

- 52 -

List of References

[1] Newell, A., Shaw, J.C. and Simon, H.A., 1958. Chess-playing programs and the
problem of complexity. IBM Journal of Research and Development, 2(4), pp.320-335.

[2] Shannon, C.E., 1988. Programming a computer for playing chess. In Computer
chess compendium (pp. 2-13). Springer, New York, NY.

[3] Zobrist, A.L., 1969, May. A model of visual organization for the game of GO.
In Proceedings of the May 14-16, 1969, spring joint computer conference (pp. 103-
112). ACM.

[4] Schaeffer, J., Burch, N., Björnsson, Y., Kishimoto, A., Müller, M., Lake, R., Lu, P. and
Sutphen, S., 2007. Checkers is solved. science, 317(5844), pp.1518-1522.

[5] Myerson, R.B., 2013. Game theory. Harvard university press.

[6] Osborne, M.J., 2004. An introduction to Game theory (Vol. 3, No. 3). New York:
Oxford university press.

[7] Nash, J.F., 1950. Equilibrium points in n-person games. Proceedings of the national
academy of sciences, 36(1), pp.48-49.

[8] Rosenthal, R.W., 1981. Games of perfect information, predatory pricing and the
chain-store paradox. Journal of Economic theory, 25(1), pp.92-100.

[9] Nash, J.F., 1951. Non-cooperative games. Annals of mathematics, pp.286-295.

[10] Jacobson, D., 1973. Optimal stochastic linear systems with exponential performance
criteria and their relation to deterministic differential games. IEEE Transactions on
Automatic control, 18(2), pp.124-131.

[11] Dixit, A.K. and Skeath, S., 2015. Games of Strategy: Fourth International Student
Edition. WW Norton & Company.

[12] Clune, J., 2007, July. Heuristic evaluation functions for general game playing.
In AAAI (Vol. 7, pp. 1134-1139).

[13] Stockman, G.C., 1979. A minimax algorithm better than alpha-beta?. Artificial
Intelligence, 12(2), pp.179-196.

[14] Yen, S.J., Chou, C.W., Chen, J.C., Wu, I.C. and Kao, K.Y., 2014. Design and
implementation of Chinese dark chess programs. IEEE Transactions on
Computational Intelligence and AI in Games, 7(1), pp.66-74.

- 53 -

[15] Zettlemoyer, L. Adversarial Search. CSE 473: Artificial Intelligence Autumn 2011
[2011 10/08/17]; Available from:
https://courses.cs.washington.edu/courses/cse473/11au/slides/cse473au11-
adversarial-search.pdf.

[16] Deb, K., Pratap, A., Agarwal, S. and Meyarivan, T.A.M.T., 2002. A fast and elitist
multiobjective genetic algorithm: NSGA-II. IEEE transactions on evolutionary
computation, 6(2), pp.182-197.

[17] Chalkiadakis, G., Elkind, E. and Wooldridge, M., 2012. Cooperative game theory:
Basic concepts and computational challenges. IEEE Intelligent Systems, 27(3),
pp.86-90.

[18] Sukumaran, J. and Holder, M.T., 2010. DendroPy: a Python library for phylogenetic
computing. Bioinformatics, 26(12), pp.1569-1571.

[19] Buckland, M., 2005. Programming game AI by example. Jones & Bartlett Learning.

[20] Tamano, T., 1979. Method of playing a board game. U.S. Patent 4,171,814.

[21] Gutschmidt, T., 2004. Game Programming with Python, Lua, and Ruby. Premier
Press.

[22] Yannakakis, G.N., 2012, May. Game AI revisited. In Proceedings of the 9th
conference on Computing Frontiers(pp. 285-292). ACM.

[23] Levi, M., 1997. A model, a method, and a map: Rational choice in comparative and
historical analysis. Comparative politics: Rationality, culture, and structure, 28, p.78.

[24] Russell, S.J. and Norvig, P., 2016. Artificial intelligence: a modern approach.
Malaysia; Pearson Education Limited,.

[25] Pearl, J., 1984. Heuristics: intelligent search strategies for computer problem solving.

[26] Tanimoto, J. and Sagara, H., 2007. Relationship between dilemma occurrence and
the existence of a weakly dominant strategy in a two-player symmetric
game. BioSystems, 90(1), pp.105-114.

[27] Melkó, E. and Nagy, B., 2007. Optimal strategy in games with chance nodes. Acta
Cybernetica, 18(2), pp.171-192.

[28] Fowler, M., 2018. Refactoring: improving the design of existing code. Addison-
Wesley Professional.

- 54 -

Appendix A
External Materials

All of the code implemented and guidance on how to play with artificial player in this project
is available on GitLab under the following URL:

https://gitlab.com/SASAD3/Final_Project_ml17y35z_Yi

This project made use of Python 3 for the software implementation, and no other external
resources were used.

https://gitlab.com/SASAD3/Final_Project_ml17y35z_Yi

- 55 -

Appendix B
Ethical Issues Addressed

In the testing stage of my project, two participants were invited to compete against the
artificial player. Both volunteers were be fully explained the aim of the test and signed the
Consent Form before testing. These forms will be submitted in a detached envelop.

	Summary
	Acknowledgements
	Table of Contents
	Chapter 1 Introduction
	1.1 The problem
	1.2 Project aim
	1.3 Objectives
	1.4 Methodology

	Chapter 2 Background Research
	2.1 Game theory
	2.1.1 Terminology
	2.1.2 Game Types
	2.1.3 Game Strategies
	2.1.4 Game Representations

	2.2 Artificial Intelligence Techniques
	2.2.1 Heuristic state Evaluation
	2.2.2 Minimax Algorithm
	2.2.4 Expectiminimax
	2.2.5 Alph-beta pruning

	2.3 Samurai
	2.3.1 Setup
	2.3.2 Rules
	2.3.3 Scoring and Capture
	2.3.4 Winning Conditions
	2.3.5 Scope of Project
	2.3.6 Approach

	2.4 Summary

	Chapter 3 Game Implementation
	3.1 Language
	3.2 Workflow
	3.3 Game Design
	3.3.1 Representation of Game Components
	3.3.2 Interface

	Chapter 4 Artificial Intelligence Player Implemen
	4.1 Basic strategies
	4.1.1 Random Selection
	4.1.2 Greedy Selection
	4.1.3 Summary

	4.2 Advanced strategies
	4.2.1 Heuristic state Evaluation Functions
	4.2.2 Minimax Algorithm
	4.2.3 Summary

	Chapter 5 Testing
	5.1 Tuning Parameters
	5.1.1 Internal Parameters in Advanced Strategy 2
	5.1.2 External Parameters in Heuristic Function

	5.2 Strategy Comparison
	5.3 Minimax and Non-Minimax Strategy Comparison
	5.4 Human Player Test

	Chapter 6 Conclusion
	6.1 Project Outcomes
	6.2 Personal Reflection
	6.3 Future Work

	List of References
	Appendix A External Materials
	Appendix B Ethical Issues Addressed

