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Summary

The purpose of this project is to create an artificial intelligence algorithm that is competent
enough to solve the game of Undead in a reasonable time. The decision to choose Undead is
because it differs to traditional puzzles of this type such (as Sudoku) and therefore adds an
extra challenge.
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Chapter 1

Introduction

1.1 Introduction

The study of solving puzzles using artificial intelligence (AI) has been of interest since the in-
ception of AI. In particular the popular game of Sudoku has been studied extensively and many
solvers for it have been created. The game of Sudoku comes under the category of puzzles called
constraint satisfaction problems [17]. These are problems whose state must conform to and sat-
isfy a number of limitations. The game of Undead, which will be the subject of this paper, is
also a constraint satisfaction problem.

The study of games such as Sudoku has led to numerous successful research projects, which
have discovered many techniques for solving puzzles using AI [12]. For example, you can model
a problem as a graph and use a graph searching algorithm (such as depth first search (DFS))
in order to solve it. Other algorithms have been developed to look at how humans would solve
the problems and then implement these more intuitive techniques algorithmically, so that an AI
can use them to solve the problem. Sudoku has a number of features that help with its problem
solving. One feature includes perfect information. This allows you to see the entire board at
once and therefore know the complete state of the game [6]. As a result of this knowledge, you
know how close you are to solving the puzzle.

Games such as Undead and Sudoku are considered to be NP-Complete [20]. This means that
the problem has no one algorithm that can find a solution to that problem quickly, however,
once a solution is found, the validity of the solution can be verified quickly. Therefore there are
no known solutions for these problems that can be executed in polynomial time.

1.2 Aim of the project

The aim of the project is to create an AI that will read from a text file a series of different
configurations for the Undead game and solve them in a time efficient manner. Currently, there
is not a solution to this problem in the form of a dedicated solver, however there are websites and
mobile apps of the game that can be played. The game should be scalable to a 5 x 5 board and be
able to deal with any level of difficulty as long as the problem is solvable. This project will help
advance my knowledge of the python programming language and improve my understanding of
a number of different AI techniques that can be applied to other situations in the future.

1.3 Objective of the project

The overall objective of the project is set out below:

• Pursue and document my background research into the implementation of AI in games and
puzzles

2
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• Read in a string of characters from a text file and process these into a particular configu-
ration of the Undead game.

• Form a path by iterating through adjacent squares and changing direction if a mirror is
hit.

• Represent the board in a form that it can be solved in e.g. a list of paths

• Develop an AI algorithm to solve both 4x4 and 5x5 configurations of the Undead game

• Evaluate the performance of this AI on a number of different 4x4 and 5x5 boards.



Chapter 2

Background Research

2.1 Constraint Satisfaction

Constraint satisfaction is an area that is used in artificial intelligence when you need to make a
number of decisions in parallel. It is used to model these decisions in terms of variables [10]. A
constraint satisfaction problem is defined as such:

• A set of variables: X1, X2, X3, ..., Xn

• Each variable Xi has a non-empty domain of possible values, e.g. X1 = [1, 2, 3, 4]

• A set of constraints, these can be unary meaning they only involve one variable e.g. X1 6= 3,
or binary meaning they can involve two variables e.g. X3 > X4.

A solution to a constraint satisfaction problem is found when each variable is assigned a value
in its domain such that none of the constraints are broken [17].

2.2 Puzzle AI

In recent years, there have been many successes in the development of AI to solve various puzzles
such as Sudoku, Karuko, 8 Queens and the 15 puzzle. These AIs are able to solve the problems
mentioned faster and more efficiently than their human counterparts. This is because they can
execute a greater number of computations in a fraction of the time. At the beginning of AI
research, the study of problem solving was almost identical to the study of search algorithms
[11]. The AI will follow an algorithm, such as depth first search (section 2.4.2), and simply
execute that algorithm until the problem is solved. In contrast, humans take a more intuitive
approach, normally using different techniques in order to eliminate possibilities and eventually
reaching the correct solution. If a human attempted to execute a search algorithm by hand it
would take much longer and it is more likely that they would make a mistake. These human
techniques can also be implemented in conjunction with traditional AI techniques in order to
eliminate certain states and therefore reduce the computation that the AI would have to do.
This combination of techniques is how the Undead game will be solved in this paper.

2.2.1 8 Queens

The 8 Queens problem is a puzzle in which you must place 8 queens on a 8 x 8 chess board
such that no two queens threaten each other [2]. A queen in chess is able to move anywhere
along the horizontal, vertical or diagonal axis and is able to move in any direction. This means
that you are unable to have two queens in the same row, column or diagonal. This problem
can be expanded out into the n Queens problem in which you must place n queens on an n x n
chess board such that no two queens threaten each other [9]. This puzzle is a classic constraint

4
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satisfaction puzzle as it has a clear list of constraints that have to be followed in order to find a
solution.

This problem has been the subject of considerable research since it was introduced by chess
composer Max Bezzel in 1848 and solved by Franz Nauck in 1850. There are a total of 92 solutions
for the original 8 Queens problem, however, accounting for the fact that the same solution can
be reflected on both the x and y axis or rotated, there are actually only 12 distinct solutions.

2.2.2 15 Puzzle

The 15 puzzle is a sliding puzzle that has 15 square tiles, numbered 1 - 15, on a 4x4 grid in a
random order. This means that there is only one blank space. The aim of the puzzle is to get
the tiles into ascending order starting from 1 in the top left corner.

Since the end state of the puzzle is known, this puzzle can be solved using a heuristic technique
and this is how many AI researchers have solved the problem. Some common heuristics used
for this problem are counting the number of misplaced tiles or finding the distance between its
current position and its goal position. In particular, due to the problem being admissible (Section
2.4.4), the A* search algorithm has been used to ensure an optimal solution.

2.2.3 Peter Norvig Sudoku

Sudoku is a puzzle that consists of a 9x9 grid composed of 9 smaller 3x3 subgrids. The aim of the
game is to fill in all 81 squares such that every row, column and subgrid contains the numbers
1-9 and none are repeated.

Peter Norvig created a famous Sudoku solver [12]. This used two main ideas, constraint
propagation and search. The constraint propagation part of this solver uses two important
strategies.

1. If a square has only one possible value, then eliminate that value from the squares peers

2. If a unit has only one possible place for a value then put the value there.

If one of the above strategies then solves a square, the board will be updated according to
the new information and then these constraints will be applied again.

The other route that was taken was search. In this technique the program will systematically
try all possibilities until it hits one that works. To do this Peter Norvig uses depth first search
recursively so that if there is an issue with a particular search tree, the program can backtrack
to try different possibilities rather than having to start from the beginning each time. This
technique is integral to solving puzzles and other AI problems [12].

2.3 Game Theory

Game theory is the mathematical study of strategic decision-making and the outcomes that are
produced due to the decisions made. It is used to describe the logical decision-making that occurs
in humans and computers, particularly in relation to games and puzzles. However, it can also
be expanded to other areas such as economics and psychology. John Von Neumann began the
idea of modern game theory with his research into zero sum games.
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Since this project will be focusing on a puzzle, rather than a game of multiple players com-
peting against each other, the strategies used may be quite different.

2.3.1 Zero Sum / Non-Zero Sum Games

A zero sum game is a game in which the payoffs always sum to zero [5]. This means that a
particular player can only have a positive pay-off if another player has a negative pay-off. For
many games this can be determined by who wins the game, with a victory counting for a +1, a
loss counting as a -1 and a draw giving both players 0. Therefore if someone wins the game then
you have 1 + (−1) = 0 hence zero sum.

Alternatively, a non-zero sum game does not require the gain of one player to be counter
balanced by another player’s shortcoming.

2.3.2 Perfect Information / Imperfect Information

A game of perfect information is one whereby every player has full awareness of the current
game state as well as all previous game states [15]. An example of this is the game of chess: each
player can see the full board and see every move that their opponent makes from the beginning
of the game. A game of imperfect information is the opposite of this, such that each player does
not know the full state of the game at any given time. A good example of this is one where
both players play simultaneously such as rock paper scissors. This is because each player holds
information and cannot know the information held by the other player.

2.4 AI Solving methods

2.4.1 Brute Force

Brute force is the simplest AI method for solving problems. The point of this method is to try
every possible option until one is found that works. It is undertaken by trying one permutation
of a solved state and then checking it against the constraints. If it satisfies all of the constraints
then it is a valid solve. If not, simply move on to the next permutation and repeat this until one
works.

This can either be done completely randomly, by picking random states or it can be done
with a form of logic behind it, in order to track the permutation. This method is primarily used
due to its simplicity to implement; it works well on small problems that do not require a great
deal of computation. However, the problem with this method arises when the problems scale
up. Generally, a brute force approach will take a lot of computational power to complete and
therefore has a high time complexity. This means that as the problems get larger this technique
will get slower until it is infeasible to use.

2.4.2 Depth-First Search

Depth-First Search (DFS) is a search algorithm that traverses graph or tree data structures
[7]. The algorithm starts at the root node and traverses down a particular route until either
completion or a rule is broken, at which point the algorithm begins backtracking back up the
tree and tries other possibilities until there are no other options and the problem is solved. DFS
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uses a stack as the data structure which is last in, first out data structure allowing the algorithm
to backtrack back through the graph by popping the most recent values off the stack.

One issue with DFS is that it could potentially never terminate. This will lead to an infinite
loop and will crash any program that it is being used on. To rectify this you can give it a fixed
depth that it can traverse down to in order to avoid overusing memory and disk space. DFS
has a low time complexity, which is why it is very popular in terms of AI as it means that even
as you scale problems up, the time to solve the problem will not increase significantly and the
problem should still be solvable. The time complexity of DFS depends on the number of vertices
and edges in the graph.

• Let V be the number of vertices in the graph

• Let E be the number of edges in the graph

The time complexity of DFS can then be written as O(V + E) for explicit graphs that are
traversed without repetition. However for implicit graphs with branching factor b that are
searched to depth d the time complexity will be O(bd).

Figure 2.1: DFS Pseudocode

2.4.3 Breadth-First Search

Breadth First Search (BFS) is a similar algorithm to DFS and is also used to traverse graph or
tree data structures [7]. The difference between BFS and DFS is that, whereas DFS will traverse
the entire way down a particular route, BFS will not proceed to the next depth level until it has
expanded all of the nodes at the current level.

Another way BFS differs from DFS is that it uses a queue instead of a stack. A queue is a
first in, first out data structure and this queue will store the frontier along which the algorithm
is currently searching. Unlike DFS, BFS is complete. This is because BFS will always find a
solution if one exists whereas DFS could get lost down a particular path in the graph that does
not have a goal state and it will never return.[7]

2.4.4 Heuristic State

Heuristics are the principles and other pieces of commonsense that are applicable to computer
systems, notably expert systems. They allow a reduction in the number of searches that need to
be performed, in order to extract a solution [13].

The objective of a heuristic function is to find a solution to a problem in a reasonable time
or to find an approximate solution to a problem if a solution cannot be found. It does not have
to find the best solution, but it must find a good solution. They are used commonly in search
problems in order to improve how optimal and how complete an existing search algorithm is. A
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Figure 2.2: BFS Pseudocode

heuristic function is said to be admissible if it never over-estimates the cost of reaching the goal
state. The A* algorithm is a heuristic search algorithm that was created by adding a heuristic
element to Dijkstra’s algorithm for the purpose of guiding its search which leads to a better
overall performance.

2.5 Undead Game

The Undead puzzle is a game which consists of a board made up of grid of squares, some of
which contain diagonal mirrors [16]. All squares that do not contain mirrors must be filled with
one of three types of monster below:

• Ghost

• Vampire

• Zombie

Figure 2.3: Undead Game
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2.5.1 Rules

Before explaining the rules of the game it is important to understand the following definitions:

• Mirror: A mirror is represented by a diagonal line on the board and it can either be forwards
or backwards. When viewing a path, if you hit a Mirror it will redirect you in another
direction.

• Monster: One of Ghost, Vampire or Zombie

• Ghost: A Ghost cannot be seen directly but can only be seen in Mirrors

• Vampire: A Vampire can only be seen directly but not through a Mirror

• Zombie: A Zombie can be seen both directly and through a Mirror

• Path: A path is a series of squares from which you start from an outer square of the grid
and traverse inwards into the board (bouncing off mirrors where necessary) until you exit
the board

• Number Visible: Each path has a number visible associated with it. This number is the
number of Monsters that can be seen from that position if you follow that path, subject to
the rules for each Monster outlined above

• Sub Path: A sequence of squares that are a subset of a path.

• Zero Path: A path on which no Monsters are visible

For simplicity, the above definitions are incorporated into this report for its remainder. Now
that the above definitions are clarified, the inner workings of the game can be investigated.

The board contains numbers along both ends of the rows and the columns, indicating how
many Monsters you will see if you look straight (horizontally/vertically) into the board from that
point [19]. A number is also allocated to each Monster displayed at the top of the board. These
numbers indicate the maximum amount of times a Monster can be placed onto the board.

The game is solved when you can fill in the board without violating any of the constraints;
meaning no more than the maximum amount given to each Monster is placed onto the board
and every number around the outside accurately describes the number of Monsters seen from
that point (remembering that Vampires can only be seen before mirrors and Ghosts can only be
seen beyond a mirror).

2.5.2 Game Classification

Perfect information

The game of Undead can be considered a game of perfect information (as described in section
2.3.2). This is because it is a puzzle that is played by one person, therefore, they will always
know every move that has been played. Furthermore, the player is able to see the entire board
from the beginning of the game, with all information accessible to them. This allows the player
to know the exact game state each time a monster is placed in a square.
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Zero-Sum

The game of Undead can also be treated as a zero sum game (as described in section 2.3.1). In
order to help solve the puzzle you can consider each path as a particular zero sum instance and
use this to verify if it is valid. To calculate this you must take the number visible from each end
of the path and subtract one from the other and take the absolute value. This can be represented
as:

Vis = |numVis1− numVis2|

Looking at the path, consider P1 to be the sub path before the first mirror hit and P2 to be the
sub path after the last mirror hit. For each of these sub paths, calculate their values subject to:

• Vampires are worth +1

• Ghosts are worth -1

• Zombies are worth 0

Finally P = |P1 - P2| from the other and if P1 == Vis this is a valid path.

Figure 2.4: Zero Sum Example

If we look at figure 2.4 this may become clearer. In this example only one path is shown.
For this path: numVis1 = 4, numVis2 = 3 therefore

Vis = |4− 3| = 1

.
P1 is the sequence Ghost, Vampire, Zombie therefore

P1 = 0 + 1− 1 = 0

P2 is just a single Ghost therefore
P2 = −1
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.
P = |0− (−1)| = 1

Since P == Vis it is confirmed that this is a valid path.

2.5.3 Constraints

Undead can be represented as a constraint satisfaction problem. A constraint satisfaction prob-
lem can be described using three features [17]:

• The set of variables

• The set of domains

• The set of constraints that specify allowable combinations of values

In the case of the Undead game, the set of variables would be a set containing each square in the
board. The set of domains would be the values that could go in each square e.g. [g, v, z, \, /].
The set of constraints would contain all of the constraints on the board.

In this game there are two levels to the constraints. First, the global constraints which are
the exact number of Ghosts, Vampires and Zombies that must be on the board. Once the board
is filled, check that the number of Ghosts, Vampires and Zombies present on the board matches
the number specified when the game was set up. The second level of constraints are the path
level constraints. Each path has a number visible and for a path to be correctly filled in it must
have the correct number of monsters visible subject to the rules of each monster, with regard to
mirrors as specified in section 2.5.1.

2.5.4 Difficulty

When playing the game of Undead on Simon Tatham’s website [18], you have the choice of playing
different difficulties of games e.g. 4x4 Easy, 4x4, 5x5 Easy, 5x5. This raises the question: how
is this difficulty determined? Rules on how the difficulties of the game are determined are not
currently in existence, but there are some trends that can be observed. One simple observation
is that easier puzzles will avoid long, twisty, reflected lines and therefore the maximum length of
a path could be a metric of difficulty.

• Let l = Maximum length of a path

• Let z, g, v = the number of zombies, ghosts and vampires respectively.

• Let n = the size of the board (n=4 indicates a 4 × 4 board).

• Let s= the sum of all the numbers around the edges of the board.

• Let m = the number of mirrors on the board.

Ghosts and Vampires have two different states whereas Zombies only have one (as they can
always be seen). Taking this into account, if the number of Ghosts and Vampires are increased
and Zombies are decreased then the difficulty will further increase. Therefore as (g+v)

z increases,
the difficulty increases.
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Another potential metric is to use the sum of the numbers around the board. This would
not give a perfect answer but it would give a sense of how difficult the game would be. A 4x4
board where all paths can see 0 monsters would give a total of 0 and a board where all paths
can see 4 monsters would give a total of 64. These would both be trivial to solve. This leads to
on average: 64

2 − |
64
2 − s| = 32− |(32− s)| or in a more general form 2n2 − |(2n2 − s)| [19].

This metric can also be adapted for counting the number of mirrors on the board. A board
with no mirrors and a board filled with mirrors are both trivial to solve therefore we can have a
metric such as n2 − |(n2 −m)|.

These different metrics can be combined to come up with one equation for the difficulty of
the board [19].

• Let w1, w2, w3, w4 = weights of the four metrics

• Let d = The overall difficulty of the board

d = (w1 ∗ l) + w2
(g + v)

z
+ w3(2n2 − |(2n2 − s)|) + w4(n2 − |(n2 −m)|)

2.5.5 Techniques for solving

Fill in Zero Paths

In order to speed up all the solving techniques, a function can be implemented that pre-processes
the board and fills in all of the zero paths. If a path has zero monsters visible then it can be
instantly filled in. This is because it is known that ghosts are not visible before a mirror and
Vampires are not visible after a mirror; this means that all of the squares can be filled in before
the first mirror as Ghosts and all squares after the first mirror as Vampires. By pre-processing
the board first, the speed of the algorithms can be greatly increased.

Brute force

One approach that could be used is to brute force the solution as described in section 2.4.1. This
would mean trying every possibility until a solution is found. This solution would be very quick
and easy to implement, however, this would have a high time complexity and running time, and
therefore, not an optimal solution.

Zero sum calculations

Another way of solving the puzzle would be to only try paths that conform to the zero-sum
calculations described in section 2.5.2. This would reduce the number of possible paths to try
thus decreasing the time taken to solve the puzzle.

DFS square by square

A good way of solving the problem could be to conduct a depth first search square by square with
backtracking until the solution is found. This should produce a much better solution than the
brute force approach as there would be structure to the search and removal of values previously
tried.
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DFS Path by Path

A potentially better version of depth first search for this particular problem would be path by
path. This would be possible if every possible path is generated and then a DFS is executed by
filling in an entire path and then endeavoring to fill the next one until a solution is found. This
solution would require more coding, however it should solve the problem more quickly as it is
only necessary to check possible paths rather than every possible value and once a path is filled
in, it eliminates many other possibilities.

DFS Path by Path with tightened constraints

A way to improve this DFS could be to eliminate other possible paths before doing the search
in order to reduce the search space as much as possible. Since the end of one path is the start of
another, it is futile to try each possible path from both ends. Henceforth, the search space can be
halved if only one side of the path is used. Furthermore, by comparing all of the possible paths
from one end of the path with all of the possible paths from the other end, the total number of
possible paths are reduced, as only the paths that appear in both sets are valid. By tightening
the constraints in this way, the search space will be significantly reduced, ergo, reducing the
branching factor. This unique solution means that the algorithm will finish more quickly and
will perform more efficiently. This follows the idea that Peter Norvig implemented in his Sudoku
solver of constraint propagation and search [12]. Therefore, this will be the optimal algorithm
implemented in the final solution of the problem in this report.



Chapter 3

Analysis and Design

3.1 Language

This project is written in Python. This language has been used for both the AI and for the
command line interface. My experience in using Python was the primary reason I chose this
language for the project. I have used Python for a number of modules throughout my degree as
well as for personal projects. Ultimately, Python is the language I am most comfortable with
and, therefore, the one with which I believe I could produce the best project.

I have similar experience with both C and Java, however, I prefer to use Python was as it has
a much simpler syntax making the code more concise and easier to follow. C and Java are both
much faster languages than Python however, for a 4x4 game of Undead, there are 16 possible
squares and three monsters that could be put in each square. With the assumption that there
is an average of 4 squares per game already filled with mirrors, then there are 312 possibilities.
Similarly, for a 5x5 game, there are 25 possible squares and with the assumption that there is an
average of 7 mirrors per game, that leaves 18 squares with 3 possible monsters each. Therefore
there are 318 ≈ 3.87 ∗ 108. Although this is a very large number, it is not impossibly large and
therefore the lower level speed benefits of C or Java are not necessary. Moreover, despite Python
being slower, it still lends itself to comparing the various different solving algorithms explored in
this project.

The advantage of using Python is that it is portable, a high - level programming language and
it can be extensible in other programming languages if the situation requires it. Furthermore, it
is modular which helps the user perform different tasks and combine them with ease.

3.2 Program Flow

In order to make the program modular and easy to follow, it is split into distinct functions, each
with their own parameters so that their use is simple and each function only performs one task.
This will be helpful in the future, if creating a similar program, as there will already be written
functions to work from allowing the algorithms used to potentially be applied to different puzzles.

To facilitate the comparison of how well different solving methods find a solution and how
efficiently they work, the running of the program is split into 4 distinct stages in order to allow
solving algorithm to be interchanged easily.

Figure 3.1: Program Flow

14
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3.2.1 Reading from the file

Using the definitions in section 2.5.1 we can define a configuration of a particular game of Undead
using the following:

• Three integers that describe how many of each monster are allowed on the board

• A board that is able to contain monsters and mirrors

• Integers surrounding all sides of the board describing how many monsters are visible on
that particular path

The first process that occurs when the program is run is the board being read in from a
text file. The board is represented as a single string of characters and once it is read into the
program, it is processed into multiple data structures that represent the particular configuration
of the game that can be used by the rest of the program. These data structures consist of:

• A matrix in the form of a 2D array to represent the board

• A string of numbers to represent the number of monsters visible down each path

• An integer to represent how many Ghosts are visible on the board

• An integer to represent how many Vampires are visible on the board

• An integer to represent how many Zombies are visible on the board

These data structures should be returned back to the main function.

3.2.2 Get Visible Monsters - Paths Dictionary

The matrix and the string of numbers discussed in the previous section are combined in a
dictionary to form a new data structure that is used to check if the board has been solved
correctly. A dictionary is used for this because the average cost of each look up is independent
of the number of items that it holds therefore it has O(1) look up time which makes the solution
more efficient. Unfortunately, the problem arises such that multiple paths could have the same
value or the same number of monsters visible; this means that neither of these can be a unique
key for the dictionary. To resolve this, the program labels each path with a letter and a number.
The letter in the label of each path indicates the direction that it will start in, so R1 is the path
starting from the top left square as it will be travelling in the right direction (figure 3.2). Two
dictionaries are used:

• One to hold the label and the path e.g. ["R1" : "., ., /, ."] with a full stop representing a
blank square and a slash representing a mirror

• One to hold the label and the number of monsters visible on that path e.g. ["R1": 2]

This ensures that the program has a quick way of finding how many monsters should be
visible from a particular path.
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Figure 3.2: Board with Path labels

3.2.3 Fill in Zero Paths

The next step in the program is to fill in the paths where no monsters are visible (section 2.5.5).
This is a quick process to carry out and reduces the number of unknown squares thereby reducing
the computation of solving the entire board. If a path has no visible monsters, then due to the
constraints on the monsters outlined in section 2.5.1, any blank square before the first mirror is
hit must be a Ghost and any blank square after the first mirror is hit must be a Vampire. We
can find these paths using the two data structures outlined in the previous step.

3.2.4 Perform Solving Algorithm

At this stage in the program, the board is partially complete from filling in the zero paths but the
remaining squares still need to be solved. The partially solved board is then passed to the solving
algorithm (e.g. DFS, brute force) and the state of the board is checked against the constraints
(Section 2.5.3) after each step that the solving algorithm performs. If all of the constraints
are satisfied then, the solved board is returned back to the main function and the program is
complete.

Whilst solving this problem, a number of different techniques and algorithms were used in
various iterations of the program in the search of finding the optimal solution. Although these
algorithms are different, they are able to be interchanged easily without having to alter any of the
rest of the program. This is undertaken by each algorithm taking in a 2D array that represents
the board as its only parameter and subsequently calling other functions in the program in order
to solve the puzzle.

3.3 Interface

Due to the nature of the program, the user will not need to interact with it once it is run. To
display results to the user, the program will use a command line interface. This interface will
display the unsolved board as well as the solved board and the time taken to solve it.

Originally, the intention was to use a graphical user interface (GUI), however, due to the time
constraints it made more sense to opt for a command line interface. A GUI would have required
more resources and taken longer to run which would have made the program less efficient; since
this paper is evaluating different methods of solving this puzzle it is important that the program
is as efficient as possible. Instead of printing out the board as a 2D array, a more user-friendly
interface (figure 3.3) was created which mimics the original game (figure 2.3). This means that
it can be directly compared to the original game in order to check for errors more efficiently and
to give the user a better experience. Unicode characters were used to create a blank board and
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thereafter, all of the values were filled in.

(a) Unsolved Board (b) Solved Board

Figure 3.3: Command Line Interface



Chapter 4

Planning

4.1 Initial Planning

The project will be split into four main areas:

• Report writing: a comprehensive report which introduces the concept of AI, the project
that I am pursuing and detailed documentation in relation to the project

• Setting up the game: implementation of a program that will read in a configuration of the
game of Undead and parse it into a form where the AI can work on it.

• Implementing the AI: implementation of the AI to solve the games of Undead provided in
a timely manner and allow for scalability.

• Testing: Inclusion of testing to make sure any bugs are removed and the game is able to
run well. This will include proof and documentation of testing.

Based on the above the report will be updated to include details of the development of the
project. This will ensure complete clarity in relation to the functioning of the game and how the
game has developed to the final product.

4.2 Overall project methodology

A waterfall based approach [3] has been chosen for this project. This is a rigid method which
consists of taking clear steps in pursuit of the final product. These steps include analysis, design,
coding, testing, implementation. The analysis and design phases are described in the first three
chapters of this report. Although the agile method [1] method is the method primarily used in
industry, I believe this method is best utilised for group projects and for products that need to
be delivered quickly. However, for this project I will be working alone and have been given ample
time, therefore I believe that the waterfall method will be the most beneficial in organising my
project workflow. Furthermore, for this project I am required to produce documentation in the
form of a report and the waterfall method enables this reporting format, rather than the agile
approach. Therefore, in light of this I have selected the waterfall project methodology.

4.3 Timeline

I began this project on the 30th September 2019. The first two weeks of the project were used to
choose which project I was going to complete and finalise any details regarding this. Following
this, I began my research to enable me to write the intermediary report. In the remainder
of the first semester (the weeks consisting of 30th September to 16th December) I began to
explore possibilities for implementation of the project as well as writing the intermediary report.
At the beginning of the second semester (the week starting the 20th January) I began full
implementation of the project and started to write my final report.

18



CHAPTER 4. PLANNING 19

Figure 4.1: Initial Gantt Chart

4.4 Risk Mitigation

This plan was designed such that all of the research and design will be completed in the first
semester, because both steps must be completed, before the coding can begin. This provides
plenty of time in the second semester for the coding of the project to be the main focus. The
implementation of the game was expected to be completed by January 27th 2020, when teaching
began for the second semester, because workload at this time gave me the opportunity to focus on
this project. I was aware that from the week of March 9th 2020, other modules had coursework
due which would demand a large proportion of my time; I wanted all coding to be complete by
the week of March 9th so that the report would be my sole focus for the remainder of the time.

4.5 Revised plan

Figure 4.2: Revised Gantt Chart

The general guide-line that the Gantt chart provides was followed closely and assisted in
keeping the work on schedule; having distinct sections allowed me to focus on only one task at a
time. This worked well during the first semester as the correct work was undertaken every week
as planned. However, once the coding began some alterations to the plan had to be made, as
implementing the set-up of the game and processing the board into data structures proved to
be more difficult than anticipated. Furthermore, it took an additional two weeks to debug all of
the issues and get a working solution with a brute force method. Therefore, I decided to revise
the plan and began writing the report much earlier, concurrently with the code, giving me more
time to edit the report and allow for more iterations. Furthermore, an extra week of testing was
required in the week of April 13th as the effectiveness of the final solution needed to be compared
with the other AI solutions that were created throughout the semester. Despite these changes,
the Gantt chart has been an effective tool and enabled me to be on track throughout my project.
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Making the AI

This section is focused on the AI of the game and how it was used to achieve the objectives of
the project. This section will also discuss the set-up of the game and how it represents the state
of the game at each stage in order for the AI to perform.

5.1 Game State Representation

To allow representation of the state of the game, the program must first be provided with some
data in order to form the initial state. This data is given in the form of a text file with a string
of characters that represent the entire board and are stored in data structures as described in
section 3.2.1.

Figure 5.1: Board to be represented

Figure 5.2: Text Representation

This will present the board in the structure of a 2D matrix and from this matrix we need to
be able to trace the different paths.This is more challenging than initially expected as the path
cannot be found by iterating through in one direction due to the fact that mirrors on the board
cause changes in direction. Initially, each square in the board needs to be able to be labelled
so that it can be uniquely identified. This is done by assigning a number to each column and a
letter to each row. For the above board, the equivalent labelled board would look like this:

20
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Figure 5.3: Labelled Board

To implement the tracing of the paths, a recursive function is applied that starts at a par-
ticular edge square, represented by its x and y coordinate, with a particular direction where 0 =
up, 1 = right, 2 = down, 3 = left. If a mirror is hit on this path, the function will be recursively
called with a new direction depending on which direction the mirror is facing and the x and y
positions of the current square. Once the path has exited the matrix from another square, the
path is then returned from the function.

Figure 5.4: Python Code for tracing a path

This path is stored in a dictionary with the label of the path as the key as described in section
3.2.2. For the board in figure 5.3, the dictionary would be as shown in figure 5.5. Backwards
facing mirrors are represented as "\\" instead of "\" as one backslash is an escape character; to
process it two backslashes were required.

As described in section 3.2.1, a dictionary is needed that pairs up the labels for these paths
with the numbers of monsters visible on said path. This is done by iterating through the numbers
given with the input and matching them up with the correct labels.
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Figure 5.5: Label Path Dictionary

Figure 5.6: Label - Number of Monsters Visible Text

Once the game is fully represented in the data structures shown above, the coding of the AI
of the project can begin.

5.2 Basic Strategy - Random Brute Force

Before beginning the AI, an initial naive approach in the form of a random brute force was
implemented. As this method can be implemented very quickly and easily once the game is set
up, the result was that there was at least one solving method working. This solution allowed
functions to be written that facilitated the verification that the final board was solved; the rest
of the program could also be tested to ensure all of the data structures were being created
and processed correctly before the implementation of more advanced strategies. Moreover, this
created a baseline performance that permitted measuring the effectiveness of future solutions by
comparing the times taken to solve the same puzzles. This was implemented by doing a while
loop that checked if the board was solved on each iteration. Inside of this while loop, 2 for
loops are contained in order to iterate through every square on the board, then for each square
a random number from 1-3 was generated. If a 1 is produced then the square is filled with a
Ghost, likewise if a 2 is produced then the square is filled with a Vampire and if a 3 is produced
then the square is filled with a Zombie. Every square is filled in this way until the end of the
matrix is reached, at which point it is checked. If it is solved, the matrix is returned and if not,
the matrix is reset to its original state and the loop restarts.
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Figure 5.7: Label - Number of Monsters Visible Dictionary

Figure 5.8: Python code for random brute force solver

5.3 Advanced Strategies

5.3.1 Fill in Zero Paths

The first advanced strategy applied was to fill in the paths that had no monsters visible as
discussed in section 3.2.3. This step is completed before any search begins and it pre-processes
the matrix in order to reduce the number of possible solutions for each path so that the final
solution can be obtained more quickly.

5.3.2 DFS Square by Square

The first form of DFS implemented was to search the board square by square, recursively trying
the different possible values until a possible solution was found. To do this, a list entitled
"choices" was created that contained the three possible monsters: choices = [g,v,z] representing
a Ghost, Vampire and Zombie respectively. The program would then loop through these choices
and fill one in, once it was filled in the matrix was checked to see if any of the constraints
mentioned in section 2.5.3 were violated. If a constraint was violated, hence it could not be
a possible path, then the next monster would be tried. If no constraint was violated then a
recursive call would be made with the new state of the board. If all three choices were tried and
each one violated a constraint then the function would return False and move up the recursive
tree and move a square back and try the next value for that square. If this occurs all the way
back to the first square and all the possibilities for that square are tried, then a solution could
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Figure 5.9: Python code for filling in paths where zero monsters are visible

not be found.
This solution worked faster than the brute force for some puzzles, however since the branching

factor was so large it failed to find a solution more often than the brute force. This indicated
that it was not a viable solution for the problem.

5.3.3 DFS Path by Path

The next stage to obtaining the solution was to try DFS path by path. Since the constraints on
the puzzle are actually on each path, rather than each square, a unique solution was found that
solved the problem in two steps:

1. Generate all the possible paths

2. Do a DFS on the possible paths

Each path not entirely filled in had every possible value of that path generated, for example
a path that was [., /, .] has two blank squares and 3 possible monsters for each square which
gives 32 = 9 possible paths. These possible paths are stored as a list of lists. The number of
possible paths can be reduced by checking the generated paths against the dictionary that stores
the label of the path and the number of monsters visible (section 5.1) and only adding the path
to the list if it has the correct number of monsters visible. Once all the possible paths have been
generated, this list of lists is stored in a dictionary called "possPathsDict" with the path label
as the key.

An example of such a data structure is shown in figure 5.10.

Figure 5.10: Possible Paths Dictionary

Once all of the possible paths are found, the dictionary can be sorted such that the path with
the fewest possibilities is at the start of the dictionary. This means that if R1 has 2 possible
paths and L4 has 4 possible paths then R1 will be before L4 in the dictionary. This order was
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chosen because it means that when the search is performed, the correct values can be found
more quickly as when further down the list, where there are more possibilities, more of the board
will have been filled in. This will mean that there are actually fewer possibilities to try than
previously thought.

Once the "possPathsDict" dictionary is formed, the search begins. At this stage, it is very
similar to the strategy discussed in section 5.3.2 and the recursion happens in a similar way.
The function will first check if the board is solved and if it is, it will then return the board,
otherwise it will take the first value of the possPathsDict and try to fill the first path in the list.
If this is a valid path, the function will make a recursive call with the new state of the board
and possPathsDict with the first element removed. If the path is not valid then the next path
in the list of lists will be tried until there are no other possibilities. If this occurs, it will return
False and move up the recursive tree. If the highest level of the recursive tree returns false then
no solution could be found.

This method works very quickly and provides solutions to all 4x4 puzzles tried and most 5x5
puzzles. This means that it could be a viable solution, however, there were ways in which it
could still be enhanced.

5.3.4 DFS Path by Path with tightened constraints

To further optimise the algorithm, it was appreciated that each path had an exit point and this
exit point was the start point for another path. For example in figure 5.11 paths R1 and U3
demonstrate this. This meant that it was only necessary to check one of these paths and the
other would be filled in. In doing this, the amount of computation that needed to be done was
halved, and therefore the program was much more efficient. The system used for this was to loop
through the label path dictionary (figure 5.5) and check where the paths were the same but in
reverse and remove one of these from the dictionary that stored all of the possible paths. Since
each side of a particular path has a different number of monsters visible, it was possible to take
the intersection of the possible paths from each side of the path and eliminate any others, as for
a path to be valid it has to be valid from both sides. This greatly reduced the number of paths
that needed to be checked and reduced the branching factor tremendously.

With these tightened constraints and optimisations the speed of solving the puzzles was
improved further and it was possible to get a valid solution to work for all 4x4 and 5x5 puzzles.
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Figure 5.11: Undead Game with one path filled in

Figure 5.12: Pseudocode for the DFS



Chapter 6

Testing the Solution

6.1 Comparison of all solving methods

This solution to the Undead game is able to solve four different types of board:

1. 4x4 Easy - A board that is 4 squares by 4 squares and of easy difficulty

2. 4x4 - A board that is 4 squares by 4 squares and of regular difficulty

3. 5x5 Easy - A board that is 5 squares by 5 squares and of easy difficulty

4. 5x5 - A board that is 5 squares by 5 squares and of regular difficulty

The method for determining the difficulty of a board is is outlined in section 2.5.4.
For each of these different types of boards, 10 random boards were created to test each

different advanced algorithm on (Section 5.3) and the solver was run 10 times for each of these
boards. The results were then plotted on a graph. The individual line graphs for each method
can be found in Appendix B.

6.1.1 4x4 Easy

Figure 6.1: 4x4 Easy Comparison of DFS Methods

These results are as expected. Looking at figure 6.1, it can be observed that DFS square by
square takes much longer than completing DFS path by path or path by path with tightened
constraints. This excludes board 5 (which was an anomalous result) where performing it square
by square was slightly faster on average than the other two methods. As for the other two
methods, DFS path by path both with and without tightened constraints, for the easy 4x4
puzzles there is very small difference between the times and they seem equally as effective.

27
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Figure 6.2: 4x4 Easy Comparison of DFS square by square vs Random Brute Force

The bar chart shown in figure 6.2 displays the comparison of DFS square by square with
random brute force. This is plotted as a separate graph as the brute force took much longer
than all of the other methods, so if it was plotted on the same graph it would be completely
impossible to tell how the other methods performed. Therefore, it is plotted on a separate graph
with the slowest of the search algorithms, however since boards 5 and 6 are so much slower than
any other solves, it makes it difficult to interpret the results.

Figure 6.3: 4x4 Easy Comparison of DFS Square by Square vs Random Brute Force without
boards 5 and 6

Figure 6.3 is the same graph as figure 6.2 however, boards 5 and 6 are removed. From this
graph, it can be noted that in a lot of cases the brute force method works faster that the search
method which is surprising. This could be because it is completely random so it could find a
working method much faster than by searching through all the possibilities. Another observation
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that can be made is that the search method has much more consistent timings, whereas the brute
force method has some faster and some slower times, which makes it a less reliable algorithm
for solving a large number of problems. This means that overall, the average of all of the times
across all the boards (now including boards 5 and 6) is faster for the DFS square by square
(0.08414053866 seconds) than the brute force (2.308259814 seconds), indicating that overall,
DFS square by square is the superior method.

6.1.2 4x4

Figure 6.4: 4x4 Comparison of DFS Methods

Since the 4x4 boards are harder than the 4x4 easy boards, they take longer to solve. This
also means that there are more apparent differences between the different solving methods which
makes the effectiveness of them easier to analyse. For this style of board, it is clear that the DFS
square by square is much slower than the other two methods, so much so that for boards 7 and
8 it failed to solve them. This shows that this method is not an effective method for solving the
problem as it failed at the second easiest type of board. The other two methods were close in
timings for solving all of the boards but with the exception of board 4, the DFS path by path
with tightened constraints was slightly faster which implies that this could be a better method
overall.

For the same reasons as mentioned in the previous section, DFS square by square and brute
force were compared separately (figure 6.5). Clearly, these findings are much the same as in the
previous section. It varies across the boards whether the DFS square by square or the brute force
is faster, however when the DFS is faster it is normally by a significant amount. For boards 7
and 8 the random brute force was able to solve them whereas the DFS square by square was not.
This would indicate that even though on average the DFS square by square was faster, overall,
the brute force is a better method for this set of boards.
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Figure 6.5: 4x4 Comparison of DFS Square by Square vs Random Brute Force

6.1.3 5x5 Easy

For the 5x5 Easy boards, the brute force failed on all of the boards, hence it is not included in
any of the charts. This shows that brute force is the least effective method investigated as it
is unable to solve all types of board and consequently cannot offer a complete solution. This
is due to the fact that, as calculated in section 3.1, a 4x4 board has 312 possibilities whereas a
5x5 board has 318 possibilities. This is an increase of a factor of 36 times, which means that
there are significantly more possibilities to try and since the brute force algorithm is on average
O(n3) time complexity this type of board is much too computationally expensive for this solving
method.

Figure 6.6: 5x5 Easy Comparison of DFS Methods

In figure 6.6, the comparisons of the different DFS methods on these boards can be exam-
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ined. Across all 10 boards, the same pattern persists: the DFS square by square is significantly
slower than the other two methods and even fails on boards 4, 5, 7, 8 and 9. The next slowest
method is DFS path by path, however this is only slightly slower than DFS path by path with
tightened constraints apart from boards 4 and 7 in which this method failed. The reason that
this method failed was that there were too many paths to check which increased the branching
factor significantly; this meant that the algorithm was too computationally expensive and failed
as it took too long to solve. The DFS path by path with tightened constraints worked for every
board and worked faster than the other two methods as it significantly reduced the number of
possible paths requiring checking (as described in section 2.5.5) which meant that it was able to
try all possibilities more quickly and therefore find the solution.

6.1.4 5x5

The brute force method was not compared for this type of board as it was unable to solve any,
for the same reasons described in section 6.1.3.

Figure 6.7: 5x5 Comparison of DFS Methods

The solving methods performed as expected on this style of board. Overall, they took more
time to solve the puzzles than on the 5x5 Easy boards, however, they still show the same trends
in the differences in times of each method. The DFS square by square was still the slowest out
of the three methods and it also failed on boards 1, 4, 6 and 8. The DFS path by path was the
next slowest, however the differences in time taken to solve between this method and the DFS
path by path with tightened constraints were more apparent and it additionally failed on board
6. On the whole, the DFS path by path with tightened constraints method was the fastest and
most consistent for this style of board as it was able to solve every board, moreover in a faster
time than the other methods.
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6.1.5 Summary

For every style of board, the same trend persisted: the slowest method tended to be the brute
force, followed by the DFS square by square and DFS path by path. The fastest and most
consistent method was the DFS path by path with tightened constraints.

Overall, the three-step approach implemented was highly effective in solving the Undead
game:

1. Generating all possible paths

2. Tightening the constraints on these paths

3. Doing a depth first search using the paths

This method was much more effective than the traditional DFS square by square approach,
which is applied to many different puzzles and games, as the method created was individually
tailored to this game and capitalised on how the constraints are enforced and how the board
must be filled in. This method was significantly faster than all other methods and was able to
solve every board presented to it with no difficulty, which means that it is a viable and effective
solution to the problem presented in this paper.

6.2 Comparison of filling in zero paths

As described in section 3.2.3, before any solving algorithm is run, the paths with zero monsters
visible are filled in. This section shows the difference in performance if these are filled in vs if
they are not. For simplicity, the method of filling in zero paths will be referred to as "zero-fill"
from now on. In the previous section, it was established that DFS path by path with tightened
constraints was the best method, and thus this method will be used to evaluate the impact that
zero-fill has on the times to solve.

6.2.1 DFS Path by Path with Tightened Constraints with and without zero-
fill

4x4 Easy

In general, for the 4x4 easy boards, implementing zero-fill produces a slightly faster solve. This
is with the exception of board 6 in which using it is slightly slower, however this is an anomalous
result and can be put down to random variation. Predominantly, using zero-fill is faster by a
small margin which shows that this method is slightly better, however most solves are still below
0.08 seconds for both with and without it. This is most likely due to the fact that this type of
board is the easiest of all the boards so it is easy enough to solve that implementing zero-fill
only provides a small optimisation.
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Figure 6.8: 4x4 Easy Zero Fill Comparison

4x4

Figure 6.9: 4x4 Zero Fill Comparison

Considering a comparison with a regular 4x4 board, it is clear that implementing the zero-fill
makes a much larger difference. This is especially highlighted in board 8, where the algorithm
failed to solve the problem without using zero-fill. Since this board is harder than the previous
to solve, using zero-fill reduces the time to solve significantly and therefore is a necessary and
effective addition.

5x5 Easy

For the 5x5 Easy boards the zero-fill is even more effective. This is clearly shown as boards 4,
5, 7, 8 and 9 are all unable to be solved without using the zero-fill and all other boards take
significantly longer without it. This is a vast difference from the 4x4 boards as there are many
more possibilities for the 5x5 board, so by partially filling in the board beforehand, this reduces
the number of paths to check significantly, leading to the solution being found more quickly.
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Figure 6.10: 5x5 Easy Zero Fill Comparison

5x5

Finally, for the 5x5 board, the necessity for use of zero-fill is just as apparent as in the previous
section. Without using this, the algorithm fails for boards 1, 4 and 6 and takes significantly
longer with all of the other boards. This due to the same reasons as discussed for the 5x5 Easy
boards and shows that the zero-fill unequivocally optimises the solve.

Figure 6.11: 5x5 Zero Fill Comparison

Summary

In conclusion, by pre-processing the board and filling in the zero paths with their implicit values,
the number of possible paths are greatly reduced which considerably improves the performance
of the solving algorithm for every type of board. For this reason, it is a necessary optimization
for a good solution to the overall problem.



Chapter 7

Conclusion

7.1 Aims and objectives

This section will critically review the objectives that were set out in section 1.3.

1. Pursue and document my background research into the implementation of AI
in games and puzzles

This objective was achieved in Chapter 2 where research was conducted into a number of
different games and puzzles and how AI is used in order to solve them. A number of the
techniques discovered in this section were used later in the project in order to create my
own unique solution.

2. Read in a string of characters from a text file and process these into a particular
configuration of the Undead game

3. Form a path by iterating through adjacent squares and changing direction if a
mirror is hit

4. Represent the board in a form that it can be solved

Objectives 2, 3 and 4 were all achieved and demonstrated in sections 3.2.1 and 5.1. Section
3.2.1 describes how the board should be read from a text file, and what data structures need
to be formed to work with the rest of the program. In section 5.1, how this is undertaken
is precisely described and it shows how the board is represented within the text file for it
to be read. The trace path function is shown, and its functionality is described in terms of
how it traverses through the path, and how the relevant data structures were created.

5. Develop an AI algorithm to solve both 4x4 and 5x5 configurations of the Un-
dead game

Sections 5.2 and 5.3 show the 4 different AI strategies, both basic and advanced, that were
created and implemented in order to solve the different puzzles. They present how these
strategies differ from one another and how they were implemented into the final solution.

6. Evaluate the performance of this AI on a number of different 4x4 and 5x5
boards

The performance of the different algorithms were compared in chapter 6. This chapter
provides graphs and descriptions evaluating the performance of the different algorithms as
well as analysing their strengths and weaknesses.

Overall, I consider the aims of the project, outlined in section 1.2, were achieved to a high
standard. The AI has shown that it can solve the puzzle efficiently and accurately. Moreover,
it was able to be scaled up to a 5x5 board. Although there is not an existing solver to compare
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my solution against, I can confidently say that the solution is written to the best of my ability
bearing in mind the time constraints: it achieves the objectives in a sufficiently short time and
has found a solution to all the puzzles presented to it.

7.2 Future work

On the website for Undead [18] games, a 7x7 board can also be generated. Given more time, I
would extend my solution to work for these boards as, currently, the solution takes too long to
solve this type of board and creates too many recursive calls. Solving this issue would be my
initial step if I were to re-visit this problem.

I would also create a GUI that would display the solved board to the user so that they would
have a clearer view of the game. Furthermore, another feature that could be added would be to
animate the solving algorithms so that the user would be able to see how they actually worked
and observe the DFS trying different possibilities and then backtracking to try other ones. This
would be beneficial for demonstration purposes to show how the algorithms work and could help
to visualise why certain algorithms are superior to others.

7.3 Legal, Social, Professional and Ethical issues

The British Computer Society’s (BCS) code of conduct [4] and the Association for Comput-
ing Machinery’s (ACM) code of ethics were consulted in order to determine the legal, social,
professional and ethical issues that would be encountered during this project.

7.3.1 Legal

One of the four key principles of BCS’s code of conduct [4] "have due regard for the legitimate
rights of third parties”. This principle relates to the potential issue of the violation of data
protection and intellectual property laws. However, this project has cited all resources that
have been used to create the solution, in particular the original Undead game created by Simon
Tantham [18]. This project also does not use any third-party data or service and, therefore,
there are no legal issues arising in this respect.

7.3.2 Social

As this project is an automated solver, it has very little human interaction. I am the only person
that has worked on the project and the only person who has tested the program, therefore, no
social issues have arisen or could arise.

7.3.3 Professional

Section 2 of the BCS code of conduct expresses the standards of professional competence and
integrity [4]. It describes the professional issues that could arise in a project, these can be
summarised as the developer misrepresenting their skills and resources when taking on a task,
thus overreaching their scope of practice. ACM’s code of ethics also reiterates this [8]. This
project was fully completed and met all the objectives set, which clearly indicated that it was
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within my level of competence and capabilities. Furthermore, any issues that had arisen in the
iterations leading to the final solution were discussed in Chapter 6, during the testing of the
different solutions. Therefore, there are no professional issues that will arise for this project.

7.3.4 Ethical

Both the ACM’s code of ethics [8] and the BCS’s code of conduct [4] discuss the ethical principles
that any developer should adhere too. The principles can be summarised as follows:

• Ensure that the public good is the central concern

• Respect the privacy of others

• Do not discriminate against others.

This project has not used any external data which eliminates the privacy issue. This project
has not discriminated against anyone and has limited user interaction therefore there are no
ethical issues.

Due to the fact that AI techniques are central to this paper, considering the "public good" as
an ethical concern can be expanded to AI as a whole [14]. AI is becoming increasingly prevalent
in today’s society and is now being used in most industries. The primary reason for the increasing
use of AI, as shown in this paper, is that AI can solve problems much faster and more efficiently
than humans. This has led to AI algorithms and techniques replacing humans in certain jobs.
This can be considered an ethical issue as the loss of jobs could be viewed as detrimental to the
"public good". Furthermore, AI is being used increasingly in medical applications which raises
the debate: if a patient is harmed as a result of an AI’s decision, who takes responsibility? Is
it the doctor who decided to use the AI? Is it the developer who created the AI? These are
just some of the ethical issues that could arise. As AI is still a relatively new field, and we
are still progressively implementing it into society many ethical issues still have not been fully
explored, and therefore the ethics of AI are still a heavily debated subject among professionals
in computing.

Overall, there are no particular ethical issues that have arisen in this project, however the
general ethical issues of the increasing development and use of AI are applicable.

7.4 Personal Reflection

Completing this project has been extremely challenging but equally, rewarding. It has been
enjoyable to work on a project and subject area that I am passionate about. The skills I have
developed and experience that I have gained will be invaluable in future projects.

Through this project I have learnt about implementing and adapting various search algo-
rithms and how AI can be used to solve different problems. I have also developed project man-
agement skills and learnt about the importance of iterating through different designs in order to
find a solution that works to meet the intended specification. Despite this, there are still areas
for improvement, my management of the project could be improved as I incorrectly predicted
how long certain elements of the coding would take which lead to me finishing the final solution
much later than intended. However, as this is my first individual project, I believe this need to
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adapt my project plan has had a positive impact as I have learnt to ensure that I account for
delays in future project planning. Ultimately, I am passionate about AI and find the subject area
of my project stimulating, which was key in maintaining my focus on the project and ensuring
that I finished each stage relatively on schedule.

The biggest challenge in the project presented itself when I had to implement the DFS path
by path with tightened constraints. This was a unique solution that I crafted specifically for
this project and, although the base structure of it was a DFS, there were many more different
elements that made this solution distinct from a classic DFS. As a result there was not any
existing code or algorithms that I could take inspiration from in order to create this unique
algorithm. Furthermore, as this was the last solution that was created, I had to write this
code concurrently with a large number of my other university assignments, which only made
the problem more demanding. Although I planned for this with my risk mitigation strategies
in section 4.4, I did not accurately assess how difficult this problem would be to solve. In the
future, I will be more careful and analytical when creating my timeline, anticipating all reasonable
possibilities.

In conclusion I consider that I have produced a good,effective solution to create an artificial
intelligence algorithm that is competent enough to solve the game of Undead, in a reasonable
time. I have been challenged and have enjoyed gaining experience about the subject area and
implementing the different stages of the project.
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Appendix A

External Material

• Gitlab was used to version control the source code of my project. This is available at
https://gitlab.com/sc17kdp/final-year-project

• VSCode was used to develop the game and AI

• Overleaf was used to write the report

• Google Sheets was used to create all the graphs and charts seen in the report
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Additional Graphs

B.1 4x4 Easy

Figure B.1: 4x4 Easy Brute Force Comparison

Figure B.2: 4x4 Easy DFS Square by Square Comparison
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Figure B.3: 4x4 Easy DFS Path by Path Comparison

Figure B.4: 4x4 Easy Path by Path with tightened constraints Comparison
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B.2 4x4

Figure B.5: 4x4 Brute Force Comparison

Figure B.6: 4x4 DFS Square by Square Comparison
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Figure B.7: 4x4 DFS Path by Path Comparison

Figure B.8: 4x4 Path by Path with tightened constraints Comparison
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B.3 5x5 Easy

Figure B.9: 5x5 Easy DFS Square by Square Comparison

Figure B.10: 5x5 Easy DFS Path by Path Comparison
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Figure B.11: 5x5 Easy Path by Path with tightened constraints Comparison
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B.4 5x5

Figure B.12: 5x5

Figure B.13: 5x5 DFS Path by Path Comparison
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Figure B.14: 5x5 Path by Path with tightened constraints Comparison


