

Final Report

AI for Solving Puzzles

Sylvain Hu

Submitted in accordance with the requirements for the degree of

BSc Computer Science with Artificial Intelligence

2020/2021

40 credits

School of Computing
FACULTY OF ENGINEERING AND PHYSICAL SCIENCE

- ii -

The candidate confirms that the following have been submitted:

Items Format Recipient(s) and Date

Final Report PDF Minerva (10/05/21)

Software Source Code GitLab Access

URL in Appendix B

Supervisor, assessor (10/05/21)

Software Instructions GitLab Access

URL in Appendix B

Supervisor, assessor (10/05/21)

Type of Project: Exploratory Software

The candidate confirms that the work submitted is their own and the appropriate

credit has been given where reference has been made to the work of others.

I understand that failure to attribute material which is obtained from another source

may be considered as plagiarism.

 Sylvain Hu

© 2020-2021 The University of Leeds and Sylvain Hu

- iii -

Summary

Sudoku is one of the most famous puzzles in the world, it has variants such as Hyper

Sudoku. These puzzles can be solved by different AI algorithms. This project consists of a

solver that can solve standard Sudokus and Hyper Sudokus using different computer

algorithms and compares the performance of these methods. The solver has a command-

line interface, and allows the user to type his own Sudoku or solve a Sudoku in the database

using one of the algorithms.

- iv -

Acknowledgements

I would like to thank my supervisor Dr Brandon Bennet for his guidance and support

throughout the project. I would also like to thank my assessor Dr David Head for the useful

feedback and advice.

- v -

Table of Contents

Summary ...iii

Acknowledgements ... iv

Table of Contents... v

Chapter 1 Introduction ... 1

1.1 Project aim and objectives .. 1

1.2 Deliverables ... 1

Chapter 2 Project planning and management .. 2

2.1 Initial plan .. 2

2.2 Changes in project aims and objectives ... 2

2.3 Project methodology and risk mitigation ... 2

2.4 Version Control .. 3

Chapter 3 Background Research ... 4

3.1 Sudoku Puzzles .. 4

3.1.1 History of Sudoku ... 4

3.1.2 Standard Sudoku Puzzle ... 4

3.1.3 Hyper Sudoku ... 5

3.1.4 Mini Sudoku .. 6

3.2 AI algorithms ... 6

3.2.1 Backtracking ... 6

3.2.2 Constraint Programming .. 7

3.2.3 Exact Cover ... 9

3.2.4 Other algorithms .. 13

CHAPTER 4 Design and Implementation ... 14

4.1 Programming Language .. 14

4.2 Code Repository ... 14

4.3 Code Structure ... 14

4.4 Implementation ... 15

- vi -

4.4.1 Backtracking ... 15

4.4.2 Constraint Satisfaction Problem ... 16

4.4.3 Exact Cover ... 18

4.4.4 Hyper Sudoku variants.. 19

4.4.5 Command Line Interface .. 20

CHAPTER 5 Testing and Analysis .. 24

5.1 Testing ... 24

5.2 Hardware Resources ... 24

5.3 Analysis for standard Sudokus .. 24

5.3.1 Backtracking ... 24

5.3.2 Constraint Programming .. 27

5.3.3 Exact Cover ... 29

5.3.4 Overall Analysis for Standard Sudokus ... 31

5.4 Analysis of Hyper Sudokus .. 32

5.4.1 Backtracking for Hyper Sudoku .. 32

5.4.2 CSP for Hyper Sudoku ... 34

5.4.3 Overall Analysis for Hyper Sudokus .. 36

CHAPTER 6 Legal, Social, Ethical and Professional Issues .. 38

3.1 Legal issues .. 38

3.2 Social issues ... 38

3.3 Ethical issues .. 38

3.4 Professional issues ... 38

CHAPTER 7 Conclusion ... 39

7.1 Summary.. 39

7.2 Future work ... 39

7.3 Personal Reflection... 40

List of References ... 41

Appendix A External Materials ... 43

Software Tools ... 43

Appendix B .. 44

Source Code ... 44

- 1 -

Chapter 1 Introduction

1.1 Project aim and objectives

The aim of the project is to design a solver for different variants of Sudoku puzzles using

different types of AI algorithms and compare its performance. The objectives of the project

are:

• Solve a standard Sudoku with backtracking

• Solve a standard Sudoku with constraint programming

• Solve a standard Sudoku with exact cover

• Using these algorithms to solve a hyper Sudoku

• Using these algorithms to solve a mini Sudoku

• Create a command-line interface for the solver

• Create a database to store puzzles of different difficulties for the user to test

• Let the user type his own Sudoku

• Analyse and explain the performance of the different algorithms

1.2 Deliverables

The deliverables for this project are:

• Final report describing the project

• Source code for the solver stored on GitLab.

• Software Instructions in a README file stored on GitLab

- 2 -

Chapter 2 Project planning and management

2.1 Initial plan

The project has started since the allocation, on the 17th October 2020. It consists of two main

parts, a research part and a development part. The first part takes place till the end of the

year, and is mainly background research. Development should start in January or February

2021. The plan is not very structured due to the unstable situation caused by the global

pandemic. The planning consists of multiple segments:

1. Express the algorithms in code

2. Find a data structure for Sudokus so that it can be used for each algorithm

3. Adapt the algorithms so that it can solve hyper Sudokus and mini Sudokus

4. Create a command-line interface for the solver

5. Compare performances of the different algorithms when solving Sudokus

6. Write the final report

2.2 Changes in project aims and objectives

Project aim and objectives changed during development as some difficulties were met. The

principal aim of the project remains the same, create a solver that can solve Sudoku and

some variants using different algorithms. Some objectives were abandoned due to a lack of

time, such as solving the variant mini Sudoku, and the hyper Sudoku version of the method

exact cover.

2.3 Project methodology and risk mitigation

For an exploratory software project, it is very difficult to have a very well-specified and strict

planning, therefore an agile project methodology is adopted, so that parts of the project can

be developed independently, and adapt the planning following the outputs of different stages

of the project development.

There are no external dependencies in this project. Therefore the only risks for this project

are difficulties coming from the developing phase, abandoning the development of some

components of the Sudoku solver may be considered for risk mitigation. Source code is

stored in GitLab’s cloud-based storage, and the report is stored in local machine and cloud-

based Google Docs.

- 3 -

2.4 Version Control

Version control is an essential part of software engineering nowadays. It keeps a backup of

the source code and serves as a safety net to protect the source code from unwanted harm.

If a problem is encountered, the system reverts changes to a previous functioning version of

the code. This project uses GitLab for version control, one of the most used source code

management platform. GitLab allows an easy way to keep track of the software’s evolution,

and to share the source code.

- 4 -

Chapter 3 Background Research

3.1 Sudoku Puzzles

3.1.1 History of Sudoku

The Sudoku puzzles find its roots back to the 18th century in Switzerland, with mathematician

Leonhard Euler’s game “Latin Squares”. Modern Sudoku puzzles were invented by Howard

Garns and first published in 1979 in the USA and were known as “Number Place”. The game

was then popularized in Japan and given the name “Sudoku”, which means digit-single, in

the 80s. The puzzle has become a world phenomenon since 2004, thanks to the efforts of

Wayne Gould, who developed a computer program that could generate Sudoku puzzles. [1]

3.1.2 Standard Sudoku Puzzle

 Figure 3.1: A standard sudoku puzzle. Taken from Sudoku.ws [2]

- 5 -

A standard Sudoku puzzle contains 81 cells, with 9 rows and 9 columns, and nine 3x3 boxes

which can be distinguished by the bold lines. Each cell may contain one digit between 1-9,

the goal is to fill all the blank cells with a digit, where each row, each column and each box

contains all the digits from 1-9, no repeated digit is allowed. The given numbers by the

puzzle setter are called the clues. A well-made sudoku puzzle has a single solution.

3.1.3 Hyper Sudoku

 Figure 3.2: A hyper sudoku puzzle. Taken from Educmat.fr 0

Hyper Sudoku or Windoku is a variant of the sudoku puzzle, the rules are the same as the

standard sudoku puzzle, except this variant has an extra constraint, there are four 3x3

interior boxes (coloured in green see figure 3.2) in which the numbers 1-9 can appear only

once. Therefore, there are thirteen 3x3 boxes to consider in this variant.

- 6 -

3.1.4 Mini Sudoku

 Figure 3.3: A mini sudoku puzzle. Taken from Sudoku.cool [4]

A simpler variant of the standard sudoku puzzle, this variant has 36 cells which can be filled

with digits between 1-6, with six 3x2 boxes. The rule is the same as the standard sudoku

puzzle, only the dimension of the grid changed.

3.2 AI algorithms

3.2.1 Backtracking

The backtracking algorithm is a brute force and a depth-first search, in the case of a

standard sudoku puzzle, this algorithm fills every empty cell sequentially to find the solution,

and if a path is tested and no solution is found, it backtracks to test another path.

The algorithm fills the first empty cell with “1”, and check if there is any violation of the 3

constraints. If the answer is no, then the algorithm moves to the next empty cell, and puts “1”

in that cell, if a violation is detected, it puts “2” instead, and checks again for violations. If it

- 7 -

advances to a cell where all the 9 digits have a violation, the algorithm leaves the cell blank

and goes back to the previous cell and increments it by one, this is backtracking.

The algorithm repeats (by calling itself) until a solution is found, it is a recursive algorithm.

And if there is no solution, it returns false.

The solving time of this algorithm may be longer than other algorithms, as there is no

optimization, it is a brute force approach. [5]

Figure 3.4: A standard Sudoku being solved by backtracking. Taken from Wikipedia 0

3.2.2 Constraint Programming

Formal Definition: A CSP (constraint satisfaction problem) is a way to formulate a

mathematical problem, and it is defined by 3 sets:

X = {X1, X2, … , Xm } is a set of variables

D = {D1, D2, … , Dm } is a set of domains

- 8 -

C = {C1, C2, … , Cm } is a set of constraints

Each variable Xi in the set X, has a domain Di in the set D, and can take any value of its

domain Di. A constraint Cj in the set C, is defined by the pair <tj, Rj> where tj  X is a subset

of k variables and Rj is an k-ary relation on the corresponding subset of domains Dj [7]. A

constraint Cj is said satisfied, if the values assigned to the variables tj by the evaluation v

satisfy the relation Rj.

An evaluation is consistent if no constraints were violated. It is complete if all variables are

assigned. An evaluation is a solution if it is both consistent and complete, such evaluation is

said to solve the CSP.

In this project, the sudoku puzzle can be modelled as a CSP, and it has a set of variables, a

set of domains and a set of constraints just like every other CSP:

Variables: Rows are represented by letters from A to I, columns by integers from 1 to 9,

therefore the set V = {A1, A2, …, I8, I9}. Each variable represents a cell, for example, the

variable C4 represents the cell in the third row and the fourth column. For clues, the variable

is the number in the cell.

Domains: Each cell can be filled with digits from 1 to 9, therefore the set D = {1, 2, 3, 4, 5, 6,

7, 8, 9}. For clues, the domain of the cell is the number in that cell.

Constraints: There are three types of constraints, one with the columns, one with the rows

and one with the boxes. Variables in each type of these constraints need to differ.

a Column Constraints: AllDiff(A1, B1, C1, D1, E1, F1, G1, H1, I1), … , AllDiff(A9, B9,

C9, D9, E9, F9, G9, H9, I9). There are nine column constraints as there are nine

columns.

b Row Constraints: AllDiff(A1, A2, A3, A4, A5, A6, A7, A8, A9), … , AllDiff(I1, I2, I3,

I4, I5, I6, I7, I8, I9). There are nine row constraints as there are nine rows.

c Box Constraints: AllDiff(A1, A2, A3, B1, B2, B3, C1, C2, C3), … , AllDiff(G7, G8,

G9, H7, H8, H9, I7, I8, I9). There are nine box constraints as there are nine boxes.

By taking account of these factors, constraint propagation is implemented, when doing an

assignment for a variable, domains of unassigned variables are modified too. There are

many forms of constraint propagation, forward checking is a good example. When a value is

assigned to a variable, the algorithm calculates each unassigned variable that neighbours

that variable, and deletes the assigned value from the domains of these neighbours.

- 9 -

For example, the cell A1 has column constraint {A1, B1, C1, D1, E1, F1, G1, H1, I1}, row

constraint { A1, A2, A3, A4, A5, A6, A7, A8, A9} and box constraint { A1, A2, A3, B1, B2 , B3,

C1, C2, C3}. If the cell A1 is assigned the value 1, the algorithm calculates the unassigned

neighbours (also called peers), which are the elements in the constraint excluding A1, which

corresponds to A2-A9 for the row, B1-I1 for the column, and B2, B3, C2, C3 for the box.

Then the algorithm deletes the value 1 from the domain of these neighbours. [8]

3.2.3 Exact Cover

Formal Definition: Given a collection S of subsets of a set X, an exact cover of X is a

subcollection S* of S that satisfies two conditions :

- The intersection of any two distinct subsets in S* is empty. That is, each element

of X should be contained in at most one subset of S*.

- Union of all subsets in S* is X. That means union should contain all the elements

in set X. So we can say that S* covers X. 0

For example:

Let S = { A, B, C, D, E } and X = { 1, 2, 3, 4, 5, 6, 7 } such that :

• A = { 1, 3, 5 }

• B = { 1, 3 }

• C = { 3, 5, 7 }

• D = { 4, 5, 6 }

• E = { 2, 4, 6, 7 }

Then S* = { A, E } is an exact cover, because each element in X is contained exactly once in

subsets { A, E }. The union of these two subsets corresponds to all the elements of the set X.

In this project, for a standard sudoku puzzle, there are 81 cells, and each cell is assigned a

digit between 1 and 9, there are 81 x 9 = 729 possibilities. A possible assignment of a

number in a cell can be labelled R1C1#1 for example, for an assignment of the digit 1 in the

cell of the first row and first column. There are four constraints sets in the exact cover

representation of sudoku:

- 10 -

• Cell: Each intersection of a row and column, therefore each cell must contain

exactly one digit. For example, there are 9 possibilities for the cell of the first

row and first column, the constraint set is: R1C1 = { R1C1#1, R1C1#2, …,

R1C1#8, R1C1#9 }. There is a total of 81 cell constraint sets.

• Row: Each row must contain each digit (1-9) exactly once. For example, the

first row can have the digit 2 in 9 different cells, the constraint set is: R1#2 = {

R1C1#2, R1C2#2, … , R1C8#2, R1C9#2 }. There is a total of 81 row

constraint sets.

• Column: Each column must contain each digit (1-9) exactly once. For

example, the first column can have the digit 3 in 9 different cells, the constrain

set is: C1#3 = { R1C1#3, R2C1#3, … , R8C1#3, R9C1#3 }. There is a total of

81 column constraint sets.

• Box: There are a total of 9 boxes in a standard sudoku puzzle, and each box

must contain each digit (1-9) exactly once. For example, for the top-left corner

box, the digit 4 can be placed in 9 of the box’s cells, the constraint set is:

B1#4 = { R1C1#4, R1C2#4, … , R3C2#4, R3C3#4 }. There is a total of 81

box constraint sets.

There is a total of 4 x 81 = 324 constraint sets in a standard sudoku puzzle, and as in the

previous paragraph, there is a total of 729 possibilities in this puzzle, therefore it can be

represented as a 729 x 324 matrix. [10]

After modelling the sudoku puzzle as an exact cover problem, Knuth’s Algorithm X can be

used to solve the puzzle.

Formal Definition: For a given matrix A of 0s and 1s.

If A is empty, the problem is solved; terminate successfully.

Otherwise choose a column, c (deterministically).

Choose a row, r, such that A[r, c] = 1 (non-deterministically).

Include r in the partial solution.

For each column j such that A[r, j] = 1,

 For each row i such that A[i,j] = 1,

 Delete row i from matrix A

 Delete column j from matrix A

Repeat this algorithm recursively on the reduced matrix A [11]. For the example in the formal

definition of exact cover, the problem is represented by the matrix:

- 11 -

 1 2 3 4 5 6 7

A 1 0 1 0 1 0 0

B 1 0 1 0 0 0 0

C 0 0 1 0 1 0 1

D 0 0 0 1 1 1 0

E 0 1 0 1 0 1 1

Figure 3.5: Matrix representation of an exact cover problem

Level 0

Step 1 – The matrix is not empty, the algorithm proceeds

Step 2 – The lowest number of 1s in any column is 1. Column 2 is the first column with one 1

and thus is selected (deterministically)

Step 3 – Row E has a 1 in column 2, thus is selected (non-deterministically).

The algorithm moves to first branch at level 1.

Level 1 Select Row E

Step 4 – Row E is included in the partial answer

Step 5 – Row E has a 1 in columns 2, 4, 6 and 7: column 2 has a 1 in row E, column 4 has a

1 in rows D and E, column 6 has a 1 in rows D and E, column 7 has 1 in rows C and E. Thus

rows C, D and E are to be removed and also columns 2, 4, 6 and 7:

 1 3 5

A 1 1 1

B 1 1 0

- 12 -

Figure 2.6: Matrix representation of an exact cover problem being solved by Knuth’s Algorithm X

Rows A and B remain, and columns 1, 3 and 5 remain.

Step 1 – The matrix is not empty, the algorithm proceeds

Step 2 - The lowest number of 1s in any column is 1. Column 5 is the first column with one 1

and thus is selected (deterministically)

Step 3 – Row A has a 1 in column 5, thus is selected (non-deterministically).

The algorithm moves to first branch at level 2.

Level 2 Select Row A

Step 4 – Row A is included in the partial answer

Step 5 – Row a has a 1 in columns 1, 3 and 5: column 1 has a 1 in rows A and B, column 3

has a 1 in rows A and B, column 5 has a 1 in row A. Thus rows A and B are to be removed

and also columns 1, 3 and 5.

Step 1 – The matrix is empty, thus this branch of the algorithm terminates successfully.

As rows A and E are selected, the final solution is:

 1 2 3 4 5 6 7

A 1 0 1 0 1 0 0

E 0 1 0 1 0 1 1

Figure 3.7: Matrix representation of the solution for the example

The subcollection {A, E } is an exact cover, because each element in X is contained exactly

once in subsets { A, E }. The union of these two subsets corresponds to all the elements of

the set X.

There are no more selected rows at level 2, thus the algorithm returns to the next branch at

level 1.

There are no more selected rows at level 1, thus the algorithm returns to the next branch at

level 0.

There are no more selected rows at level 0, thus the algorithm terminates.

- 13 -

This is an example of how Knuth’s Algorithm X works on a 5 x 7 matrix. For a standard

Sudoku, it is a 729 x 324 matrix.

3.2.4 Other algorithms

There are more AI algorithms to solve a Sudoku puzzle. A stochastic optimization method is

a random-based algorithm. Multiple search techniques exist such as Cultural Genetic

Algorithm, or Quantum Simulated Annealing, but it is not considered in this project. [12]

- 14 -

CHAPTER 4 Design and Implementation

4.1 Programming Language

This project uses Python to implement the Sudoku solver. As developing features is the

main goal of this project, Python is chosen because of its high productivity. Due to its

simplicity, more features can be done while using less code than other languages such as C

or C++. Python’s portability is also a reason why this project opted for it, the will to be able to

use the solver on different platforms is very important. Other languages offer better efficiency

than Python in performing some task, which can result in a higher speed. However, Python

is still opted because of its high flexibility and portability, analysis of the performance of the

different algorithms should not change too much, as the time complexity depends on the

algorithms and not the programming language used.

The Sudoku solver is run through the command line. The code is written in Python3 using

the editor Atom. No additional program is required to run the solver.

4.2 Code Repository

The code repository is on GitLab. All development was made on the ‘master’ branch, as no

major issue was encountered. Every change to the source code was tested before

committing to the ‘master’ branch, to avoid fatal errors.

4.3 Code Structure

A 2D list data structure is opted to represent Sudoku puzzles. This data structure is easy to

access, as each row is a row of the puzzle and each column is a column of the puzzle, it is

very intuitive. As the puzzles are all the same size, 9 rows and 9 columns, the length of the

2D list remains the same as well, with 9 rows of 9 elements. Empty cells of a puzzle are filled

with 0s. Grids are stored in different text files, each file represents a different difficulty of

Sudoku puzzles or Hyper Sudoku puzzles. Each text file has 10 grids, each grid is separated

by a $, and there is a new line between each row, and a space between each cell for better

readability. Standard Sudoku puzzles are from sudoku.com 0, Hyper Sudoku puzzles are

from e-sudoku.fr 0. These websites are open source.

- 15 -

Figure 4.1: Database Sudoku Grids

Each algorithm is developed in an independent python file for better clarity. One final

function wraps up every file, and these functions are the only ones that are called in the main

file, the main file also provides the command-line interface.

A utility file is created, for functions that are used in every algorithm, such as a function

named printing that displays the grid in a more readable way, another function named

readFile that reads the database and creates a 2D list, and one final function named own

that takes user input and creates a 2D list.

4.4 Implementation

4.4.1 Backtracking

4 functions constituted the backtracking.py file.

The first one is the valid function, this function takes 4 arguments: x for row number, y for

column number, n for inserted cell value and board as the whole Sudoku puzzle. This

function checks if the number n is a valid value in a given position determined by x and y in

- 16 -

the given board, if the inserted number n is already in the row, or the column or the box, then

the function returns False. If it passes all the steps, then the function returns True.

The second function is find_empty_cell, which takes argument board that corresponds to the

puzzle in a 2D list structure. This function loops through the whole board and returns row

number i and column number j of an empty cell, empty cells are 0s in the list. If no empty cell

is found, the function returns the tuple (-1, -1).

The third function is named brute as backtracking is a brute force approach of solving the

puzzles and it contains the backtracking part of the file. First, it checks if there are any empty

cells in the puzzle, if there is, a tuple (x, y) takes the values i and j returned by the

find_empty_cell function, if there is no empty cells, the tuple’s value is (-1, -1), the brute

function returns the puzzle. If there are empty cell, the function tries to assign values from 1

to 9 to the detected empty cell, and checks if the assigned value is valid using the valid

function. If the value is valid, the function puts the value in the cell. Then by calling this

function recursively, it tries to fill the whole board, the backtracking happens when none of

the 9 values are valid for a cell, the function resets the cell to 0 to find another path. If the

board is solved, the function returns the board as a 2D list.

The last function of the backtracking.py file is named brute_solve and takes board as

argument and prints the unsolved puzzle, and the puzzle solved by the brute function using

the printing function from utility.py file, this function formats the output for a more readable

result. The brute_solve function also prints out the time used for solving a puzzle with the

brute function in seconds for later analysis.

4.4.2 Constraint Satisfaction Problem

The constraint satisfaction problem algorithm is in csp.py file. This file is based on Peter

Norvig’s python2 Sudoku solver and is correctly referenced in source code 0. This file

contains 10 functions.

As this algorithm expresses the puzzle as a CSP, with sets of variables, domains and

constraints, a new way to access the Sudoku grid is needed. 2 strings are created, one

called digits represents ‘123456789’ and another one called rows represents ‘ABCDEFGHI’.

The digits are used to express column number and letters are used to express row number.

Therefore the cell C1 corresponds to the cell of the third row and first column. This notation

for each cell is the same as the one in section 3.2.2 Constraint Programming. A cross

function that takes 2 arguments A and B does the string concatenation of rows and digits, it

is then stored in a list called squares. Thus, there are 81 elements in the list which

corresponds to the 81 cells in a Sudoku puzzle. There are 3 sets of constraints in a Sudoku

- 17 -

puzzle: row constraints, column constraints and box constraints, each set has 9 constraints

which makes a total of 27 constraints in the whole board. These constraints are stored in

unitlist in the code. Each cell in the Sudoku grid has 3 corresponding constraints, constraints

of a specific cell can be accessed with units, a python dictionary in the code. In this

dictionary, key is the cell and value is the list of constraints. When called, this dictionary

returns the row constraint, column constraint and box constraint where the given cell is also

in the constraints by searching in unitlist. For example, units[‘A2’] returns [[‘A2’, ‘B2’, ‘C2’,

‘D2’, ‘E2’, ‘F2’, ‘G2’, ‘H2’, ‘I2’], [‘A1’, ‘A2’, ‘A3’, ‘A4’, ‘A5’, ‘A6’, ‘A7’, ‘A8’, ‘A9’], [‘A1’, ‘A2’, ‘A3’,

‘B1’, ‘B2’, ‘B3’, ‘C1’, ‘C2’, ‘C3’]. To find the neighbours of a given cell, a dictionary named

peers is created. This dictionary loops through the values returned by the units dictionary,

and returns all values without the given cell, these values are unique using python set. For

the example above, peers [‘A2’] returns {'A7', 'D2', 'B3', 'A5', 'H2', 'C1', 'G2', 'B1', 'I2', 'C2',

'A8', 'A1', 'C3', 'F2', 'A9', 'A4', 'B2', 'E2', 'A3', 'A6'} in an unordered way.

This algorithm needs to read Sudoku grids that are in 2D list data structure in the database,

the function grid_values takes Sudoku grids as an argument. It stores all the cell values of

the grid in a list called grid_chars, and associates the cell name with the stored value in a

dictionary. Therefore, the key of the dictionary is the cell name such as ‘A2’ for example, and

its corresponding value is a digit between 0 and 9, 0 means that the cell is empty as

explained in 4.3 Code Structure.

The domain of each cell is D = { 1, 2, 3, 4, 5, 6, 7, 8, 9 }, therefore each cell has possible

values ranging from 1 to 9 at the start of the puzzle. These possible values are stored in the

dictionary values in the parse_grid function. The function uses grid_values to extract the

given grid, and calls the assign function to assign the value to the cell with initial digit value

while eliminating the value from the cell’s peers. If it fails to assign, parse_grid returns False,

otherwise it returns the values dictionary.

The assign function is used in the previous function, it takes 3 arguments. A dictionary called

values, which corresponds to the one returned by parse_grid function in this case, cell name

s and a digit d. The assign function updates the values dictionary of a given cell s, by

eliminating the other values than d with the function eliminate. If the eliminate function fails to

do its job, assign returns False, otherwise it returns the values dictionary.

The eliminate function does the constraint propagation part of the code, it takes 3

arguments, a dictionary values, cell name s and digit value d. It removes the given value d

from the dictionary values for a given cell s if d is not in the domain of the cell. If there are no

more values left in values[s], which means that a cell has no potential value, the function

returns False. If a cell has only one potential value, the function eliminates this potential

value from all the cell’s peers. If the given digit d has no place elsewhere in the puzzle, the

function returns False. If there is only one place for digit d, then it puts d in that cell, and

- 18 -

removes d from all that cell’s peers. If the function has no failures, it returns the dictionary

values.

The search function takes one argument, a dictionary values. If the domain of each cell in

the puzzle has exactly one value, which means that for all cells s in the grid, values[s] has

exactly one element, then the puzzle is solved, the function returns the dictionary values. If

the puzzle is not solved, the algorithm uses variable ordering by looking for minimum

remaining values for a cell, a common heuristic method. Search chooses a cell with the

minimum number of potential values, and calls assign to try to eliminate potential values

from the peers, this step is repeated by calling the search function recursively.

The some function returns some elements if the last step of the search function succeeded.

The solve function parses the grid with parse_grid and calls search to solve the puzzle.

The display function takes argument the dictionary values, and prints out the grid in a more

readable way. Adjustments have been made to obtain the same output as the function

printing in utility.py.

The last function of the csp.py file is named csp_solve and takes board as argument and

prints the unsolved puzzle, and the puzzle solved by the solve function using the display

function. The csp_solve function also prints out the time used for solving a puzzle with the

solve function in seconds for later analysis.

4.4.3 Exact Cover

The exact cover algorithm is in exact.py file. This file is based on Ali Assaf’s algorithm X and

Sudoku solver, and is correctly referenced in the source code 0. The code has a GNU

General Public License, which grants open-source permission for users to make changes to

the software, download it or to redistribute it 0.

The first function is named solve_sudoku, it takes argument the whole Sudoku puzzle. Then,

it creates a list of 4 dictionaries, each corresponding to one of the 4 constraints sets as in

section 3.2.3 Exact Cover: cell constraints with key “rc” in code, row constraints with key “rn”,

column constraints with key “cn” and box constraints with key “bn”. For example, cell

constraint for the cell in the first row and first column of the puzzle R1C1 is labelled (‘rc’, (0,

0)) in the code. Row constraint of the first row with digit 9 R1#9 is labelled (‘rn’, (0, 9)).

Column constraint of first column with digit 1 C1#1 is labelled (‘cn’, (0, 1)). Box constraint of

top left box with digit 2 B1#2 is labelled (‘bn’, (0, 2)). Row, column and box numbers all start

by 0 in source code. A dictionary Y is created, to store the possibilities. For example, a

possible assignment of a number in a cell labelled R1C1#1 corresponds to an assignment of

- 19 -

the digit 1 in the cell of the first row and first column, this possibility can be called with Y[(0,

0, 1)] in the code. Values of this key are the corresponding constraints, in this example, Y[(

0, 0, 1)] returns [(‘rc’, (0, 0)), (‘rn’, (0,1)), (‘cn’,(0, 1)), (‘bn’, (0, 1))], note that these values

can be found in the X list. Using the exact_cover function, which takes input X and Y and

keeps only unique values using set, calling a constraint now returns all the related

possibilities. For example, standard representation of cell constraint R1C1 = ({ R1C1#1},

{R1C1#2}, … {R1C1#8}, {R1C1#9}), can now be called using (‘rc’, (0, 0)) as the dictionary

key in the code, and it returns (0, 0, 1), (0, 0, 2), (0, 0, 3), (0, 0, 4), (0, 0, 5), (0, 0, 6), (0, 0,

7), (0, 0, 8), (0, 0, 9) that are originally in the Y dictionary.

Now that the Sudoku puzzle is represented as an exact cover problem, so as a matrix (

some constraints in X have been discarded, for example, if the digit one is already in the first

row, there is no R1#1, so no (‘rn, (0, 1)) in X), Knuth’s Algorithm X can be applied to the

problem to solve it, by using the functions select and deselect, the steps are the same as the

ones used in section 3.2.3 Exact Cover. Possibilities are discarded and once the puzzle is

solved, only 81 possibilities are left, in a (x, y, z) format with x and y ranging from 0 to 8

representing the row and column number respectively and z ranging from 1 to 9 representing

the digit value in the cell.

The last function of the exact.py file is named exact_solve and takes board as argument and

prints the unsolved puzzle, and the puzzle solved by the solve function using the printing

function. The exact_solve function also prints out the time used for solving a puzzle with the

solve function in seconds for later analysis.

4.4.4 Hyper Sudoku variants

Two files are for solving the Hyper Sudoku variants: hypersudoku_backtracking.py and

hypersudoku_csp.py. As Hyper Sudoku differs from a standard Sudoku puzzle with 4 extra

box constraints, modifications in the backtracking.py and csp.py files made it possible to

solve the variants.

In hypersudoku_backtracking.py, modifying the valid function by checking the extra 4 boxes,

therefore valid checks a total of 13 boxes in addition to the standard row and column check.

The algorithm backtracks to the previous cell if some constraints are violated and all possible

digits are invalid for the current cell.

In hypersudoku_csp.py, modifying the unitlist, which now has 4 sets of constraints sets

compared to the previous 3 sets. The new set is the Hyper Sudoku box constraint which is

composed of 4 constraints as there are 4 extra boxes. This brings the total number of

constraints to 31 in the whole Hyper Sudoku puzzle while solving it as a CSP.

- 20 -

These modifications to the algorithm’s constraints are enough to solve the variant Hyper

Sudoku puzzle.

4.4.5 Command-Line Interface

The command-line interface is provided in the main.py file. The solver is run by executing

the main file, and a help screen shows (see figure 4.2).

Figure 4.2: Solver screen

This screen offers the users some options and asks the user to input a number between 1

and 3 to use the solver. Option 1 lets the user type his own Sudoku puzzle, option 2 lets the

user solve a puzzle in the database, option 3 exits the solver. If the user chooses either

option 1 or option 2, another screen displaying the available algorithms shows (see figure

4.3).

Figure 4.3: Solver algorithm screen

- 21 -

After choosing the correct algorithm, if the user’s input is 1 in the first screen, the solver

prompts the user to enter his own Sudoku line by line with each cell separated by a space (

see figure 4.4). This functionality is provided by own in utility.py.

Figure 4.4: User’s own Sudoku

If the user chooses option 2 in the first screen, and has chosen the algorithm, the solver

asks the user what difficulty of Sudoku puzzle does it need to solve (see figure 4.5).

Figure 4.5: Database Sudoku difficulty

Once the user inputted Sudoku puzzle valid, or the database Sudoku puzzle difficulty

chosen, the output format of the answer remains the same (see figure 4.6).

- 22 -

Figure 4.6: Initial Sudoku and solved Sudoku with used time

If option 2 is opted at the first screen, when a puzzle is solved, the solver asks the user if he

wants to run another grid from the database. This screen repeats after each solved puzzle

until there are no more grids in the corresponding txt file (see figure 4.7)

- 23 -

Figure 4.7: Solver asking the user for another puzzle

If the input is 1, the solver outputs another Sudoku puzzle and solves it like Figure 4.6. If the

input is 2, the solver exits.

This sums up the functionalities of the solver.

- 24 -

CHAPTER 5 Testing and Analysis

5.1 Testing

As described in section 3.1.2 Standard Sudoku Puzzle, a well-made Sudoku puzzle has only

one solution, every puzzle in the database has only one solution possible and this project

assumes that when users type their own Sudokus, these puzzles respect the same criteria.

There are 4 txt files in the database, each file contains 10 grids which makes a total of 40

puzzles. Solutions for the 20 standard Sudoku puzzles returned by backtracking, csp and

exact cover, all have been validated by hand. It is also the case for the 20 Hyper Sudoku

puzzles. No unit testing is made due to a lack of time, but the solver does solve all the

puzzles in the database using different algorithms and displays the time used by each

algorithm, which is the aim of the project.

Each grid is run 3 times with each algorithm to get an average time for more precision.

5.2 Hardware Resources

Solver is run on local PC, therefore the performance of each algorithm is impacted by the

hardware. The specification of the PC are:

• OS: macOS Big Sur 11.2.3

• Processor: 2.2GHz 6-core Intel Core i7

• Graphics: Intel UHD Graphics 630

• RAM: 16GB DDR4 2400 MHz

All tests are performed using the same PC and software, with only essential programs

running to ensure consistency of the result.

5.3 Analysis for standard Sudokus

5.3.1 Backtracking

There is a total of 20 grids in the database to be solved by this algorithm. 10 graded as easy

and 10 graded as expert difficulty by sudoku.com. Backtracking is a brute-force approach, its

performance is expected to be slow compared to other algorithms.

- 25 -

Grids Test 1 (s) Test 2 (s) Test 3 (s) Average

(rounded

in ms)

1
0.0013401508331298828

0.0016400814056396484

0.001753091812133789

1.57777

2
0.00209808349609375

0.002438068389892578

0.0020029544830322266

2.17970

3
0.0029020309448242188

0.003604888916015625

0.003555774688720703

3.35423

4
0.0029644171396891275

0.002849102020263672

0.0030410289764404297

2.96441

5
0.0031659603118896484

0.004679203033447266

0.004530906677246094

4.12535

6
0.005460977554321289

0.006062984466552734

0.0054128170013427734

5.64559

7
0.009733915328979492

0.009826183319091797

0.00984501838684082

9.80171

8
0.0021219253540039062

0.0019459724426269531

0.0021390914916992188

2.06900

9
0.0043141841888427734

0.004699230194091797

0.004530906677246094

4.51477

10
0.010593175888061523

0.010345935821533203

0.010307073593139648

10.4154

Figure 5.1: Backtracking table for easy puzzles

Grids Test 1 (s) Test 2 (s) Test 3 (s) Average

(rounded

in ms)

1 1.285672903060913 1.2860898971557617 1.288867712020874
1286.88

2 0.43306398391723633 0.4369959831237793 0.43694376945495605
435.668

3 5.172250986099243 5.191348075866699 5.203246831893921
5188.95

- 26 -

4 2.31778883934021 2.307745933532715 2.3244497776031494
2316.67

5 1.3387858867645264 1.3408401012420654 1.3291070461273193
1336.24

6 0.03474783897399902 0.0340123176574707 0.03425312042236328
34.3378

7 0.43198585510253906 0.42772889137268066 0.43154096603393555
430.419

8 0.10492801666259766 0.10414910316467285 0.10429000854492188
104.456

9 5.454643964767456 5.439525127410889 5.467653036117554
5453.94

10 0.6015429496765137 0.6028859615325928 0.602114200592041
602.181

Figure 5.2: Backtracking table for hard puzzles

Figure 5.3: Average time for easy puzzles. Figure 5.4: Average time for hard puzzles

A significant increase in time can be observed between the two difficulties of the puzzle.

Where for easy puzzles, the backtracking method never exceeds 11 ms to solve a puzzle,

for hard puzzles, even the fastest solution takes 34 ms and the slowest one takes up to 5

seconds. This difference can be explained by the fact that there are generally more clues

given in the easy grids than the hard grids. Another factor is that backtracking in this project

has no heuristic method, therefore it always go through the grid the same way no matter the

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

(m
s)

Grids

0

1000

2000

3000

4000

5000

6000

1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

(m
s)

Grids

- 27 -

clues, the algorithm starts by the first empty cell of the grid and tries digits from 1-9. The

more backtrack needed in solving a puzzle, the more time the algorithm takes.

5.3.2 Constraint Programming

Constraint programming algorithm solves puzzles that are in the same database as

backtracking. There are two types of Sudokus in the database, 10 easy grids and 10 hard

grids. This algorithm is expected to be more efficient than backtracking in solving hard

puzzles, as there is a heuristic method in this algorithm.

Grids Test 1 (s) Test 2 (s) Test 3 (s) Average

(rounded

in ms)

1 0.004914045333862305 0.005265235900878906 0.00545191764831543
5.21040

2 0.0050351619720458984 0.004868984222412109 0.004681110382080078
4.86175

3 0.005506038665771484 0.004932880401611328 0.005099058151245117
5.17933

4 0.004841804504394531 0.004723072052001953 0.004853010177612305
4.80596

5 0.0045931339263916016 0.004900932312011719 0.0051190853118896484
4.87105

6 0.004940032958984375 0.004991054534912109 0.005122184753417969
5.01776

7 0.004858970642089844 0.00483393669128418 0.005101919174194336
4.93161

8 0.004905223846435547 0.0047528743743896484 0.005002021789550781
4.88671

9 0.004810333251953125 0.0048370361328125 0.005059242248535156
4.90220

10 0.004591941833496094 0.004785299301147461 0.0049631595611572266
4.78013

Figure 5.5: CSP table for easy puzzles

- 28 -

Grids Test 1 (s) Test 2 (s) Test 3 (s) Average

(rounded

in ms)

1 0.006618022918701172 0.0082900524139404 0.0065348148345947266
7.14763

2 0.00565791130065918 0.0063190460205078125 0.006063222885131836
6.01339

3 0.020637989044189453 0.016963720321655273 0.02107524871826172
19.5590

4 0.009830236434936523 0.008533000946044922 0.008785247802734375
9.04950

5 0.004937410354614258 0.004970073699951172 0.0047762393951416016
4.89457

6 0.00789499282836914 0.007922887802124023 0.008070945739746094
7.96294

7 0.0049228668212890625 0.004624128341674805 0.0053827762603759766
4.97659

8 0.006520271301269531 0.00640416145324707 0.005944013595581055
6.28948

9 0.007712125778198242 0.007925987243652344 0.009093046188354492
8.24372

10 0.009009122848510742 0.008620977401733398 0.009122133255004883
8.91741

Figure 5.6: CSP table for hard puzzles

Figure 5.7: Average CSP time for easy puzzles Figure 5.8: Average CSP time for hard puzzles

4.5

4.6

4.7

4.8

4.9

5

5.1

5.2

5.3

1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

(m
s)

Grids

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

(m
s)

Grids

- 29 -

CSP has a minimum performance of more than 4 ms, which is more than the minimum of

backtracking, this can be explained by the fact that this algorithm is implemented with more

code, therefore more elements to compile for the computer. There is only a very small

increase in time for harder puzzles, this small difference can be explained by the efficiency

of the algorithm, which uses heuristic method to choose which cell to solve after each step

(explained in section 4.4.2 Constraint Satisfaction Problem).

5.3.3 Exact Cover

The exact cover algorithm solves the same puzzles from the database as the other two

methods, 10 easy standard Sudokus and 10 hard standard Sudokus. By expressing the

Sudoku grid as an exact cover problem, the algorithm only needs to solve a matrix, therefore

this algorithm is also expected to be more efficient than backtracking for hard puzzles, but

slower than CSP.

Grids Test 1 (s) Test 2 (s) Test 3 (s) Average

(rounded

in ms)

1 0.006553173065185547 0.006176948547363281 0.0063381195068359375
6.35608

2 0.00515294075012207 0.004959821701049805 0.0049610137939453125
5.02459

3 0.005212068557739258 0.0055789947509765625 0.004514932632446289
5.10200

4 0.00491023063659668 0.004759073257446289 0.004873037338256836
4.84745

5 0.005141019821166992 0.0051267147064208984 0.005028247833251953
5.09866

6 0.004945993423461914 0.004947185516357422 0.004903316497802734
4.93217

7 0.005109071731567383 0.004599094390869141 0.005480766296386719
5.06298

8 0.005065202713012695 0.00460505485534668 0.005120992660522461
4.93042

9 0.004892826080322266 0.005012989044189453 0.004586935043334961
4.83092

- 30 -

10 0.005204916000366211 0.005285739898681641 0.005400896072387695
5.29718

Figure 5.9: Exact Cover table for easy puzzles

Grids Test 1 (s) Test 2 (s) Test 3 (s) Average

(rounded

in ms)

1 0.008473873138427734 0.008497953414916992 0.008559942245483398
8.51059

2 0.009385108947753906 0.008426904678344727 0.009485721588134766
9.09925

3 0.03735661506652832 0.03766584396362305 0.03725433349609375
37.4256

4 0.019131898880004883 0.019995927810668945 0.01898193359375
19.3699

5 0.00792694091796875 0.007883071899414062 0.008410930633544922
8.07365

6 0.015487194061279297 0.015547752380371094 0.01468801498413086
15.2410

7 0.006564140319824219 0.0061872005462646484 0.0056591033935546875
6.13681

8 0.009937047958374023 0.010026931762695312 0.010331869125366211
10.0986

9 0.013519763946533203 0.012639999389648438 0.01890707015991211
15.0223

10 0.013720035552978516 0.013689041137695312 0.013419866561889648
13.6096

Figure 5.10: Exact Cover table for hard puzzles

- 31 -

Figure 5.11: Average EC time for easy puzzles Figure 5.12: Average EC time for hard puzzles

As CSP, exact cover algorithm has a very stable performance when solving easy Sudokus.

Averaging around 5 ms per easy grid, which is slower than backtracking, this can be

explained just as CSP, a lengthier code makes this algorithm slower to compile. When

solving hard puzzles, this algorithm performs better than backtracking and is slower than

CSP just as expected. This algorithm does not include a major heuristic method like CSP,

but by expressing the Sudokus as an exact cover problem simplifies the solving of the

puzzle, which makes this algorithm faster than backtracking.

5.3.4 Overall Analysis for Standard Sudokus

Overall, for easy Sudokus, backtracking has the best performance with around 4.7 ms

average, this can be explained as its code is the shortest, an easy puzzle does not solicit

many methods from the different algorithms, solving of these puzzles is very straightforward.

CSP and Exact Cover are less efficient but the difference is minimal, with around 4.9 ms

average and 5.1 ms average respectively. For hard Sudokus with fewer clues, CSP performs

the best, with around 8 ms average for the given puzzles in the database, then follows Exact

Cover with around 14 ms average and finally backtracking which is far behind with 1718 ms

average. This huge difference between backtracking and the other two algorithms can be

explained by the lack of clues in harder puzzles, therefore more backtracking is performed in

the algorithm which causes a lack of efficiency. Whereas, the other two algorithms still

express the puzzle as a CSP and as an exact cover problem respectively, which does not

alter their performance so much. CSP’s heuristic method in its search function makes the

algorithm faster than exact cover. The association of expressing a Sudoku puzzle as an

exact cover problem and the use of Knuth’s Algorithm X to solve that problem, makes exact

cover a more efficient algorithm than backtracking in solving hard sudokus.

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

(m
s)

Grids

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

(m
s)

Grids

- 32 -

Figure 5.13: Average time of all algorithms for Standard Sudokus

5.4 Analysis of Hyper Sudokus

5.4.1 Backtracking for Hyper Sudoku

Just as standard Sudokus in the database, there is a total of 20 hyper Sudoku puzzles too.

10 are labelled as easy and another 10 labelled as hard by e-sudoku.fr. Backtracking is

expected to perform fairly well in easy hyper Sudokus and very poorly in hard hyper

Sudokus.

Grids Test 1 (s) Test 2 (s) Test 3 (s) Average

(rounded

in ms)

1 0.0036611557006835938 0.0035338401794433594 0.003064870834350586
3.41996

2 0.0020182132720947266 0.002010822296142578 0.0018510818481445312
1.96004

3 0.0010728836059570312 0.0009009838104248047 0.0010912418365478516
1.02170

4 0.013570070266723633 0.015076160430908203 0.014076948165893555
14.2411

4.66479 4.94469 5.14825

1718.97

8.30542 14.2587
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Backtracking CSP Exact

A
ve

ra
ge

 t
im

e
 (

m
s)

Algorithms

easy

hard

- 33 -

5 0.037506103515625 0.03620004653930664 0.03625178337097168
36.6526

6 0.03377032279968262 0.03060293197631836 0.030639171600341797
31.6708

7 0.009909868240356445 0.008951187133789062 0.009302139282226562
9.38773

8 0.0012218952178955078 0.0012178421020507812 0.001194000244140625
1.21125

9 0.008750677108764648 0.00870823860168457 0.008104801177978516
8.52124

10 0.016927003860473633 0.016437053680419922 0.01613593101501465
16.5000

Figure 5.14: Backtracking table for easy hyper Sudoku puzzles

Grids Test 1 (s) Test 2 (s) Test 3 (s) Average

(rounded

in ms)

1 0.34116387367248535 0.34184718132019043 0.34281492233276367
341.942

2 15.707941055297852 16.26479411125183 15.899603843688965
15957.4

3 4.9730119705200195 5.1021058559417725 4.971346378326416
5015.49

4 0.5106329917907715 0.5145809650421143 0.5171787738800049
514.131

5 38.899807929992676 39.91359305381775 40.225334882736206
39679.6

6 0.6702980995178223 0.694188117980957 0.7058260440826416
690.104

7 128.3936402797699 133.47421193122864 127.89539408683777
129921

8 1.2595899105072021 1.2988879680633545 1.298346996307373
1285.61

9 1.3026628494262695 1.350059986114502 1.3667981624603271
1339.84

10 7.905869960784912 8.163571119308472 8.072489023208618
8047.31

- 34 -

Figure 5.15: Backtracking table for hard hyper Sudoku puzzles

Figure 5.16: Average backtracking time for easy Figure 5.17: Average backtracking time for hard

A huge increase in time and very long solving time can be observed when solving hard

puzzles. This can be explained by the fact that there are more constraints which

corresponds to the 4 extra hyper Sudoku boxes, thus backtracking backtracks more when a

constraint is violated.

5.4.2 CSP for Hyper Sudoku

This modified CSP algorithm has one more constraint set which corresponds to the hyper

sudoku boxes. This algorithm solves 20 grids, the same as backtracking for hyper Sudokus.

Grids Test 1 (s) Test 2 (s) Test 3 (s) Average

(rounded

in ms)

1 0.005585193634033203 0.0056209564208984375 0.00583195686340332
5.67937

2 0.005600929260253906 0.005882740020751953 0.0055348873138427734
5.67285

3 0.0051119327545166016 0.005438804626464844 0.005181074142456055
5.24394

4 0.0057048797607421875 0.005597114562988281 0.005638837814331055
5.64694

5 0.0055389404296875 0.0055370330810546875 0.00564885139465332
5.57494

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

(m
s)

Grids

341.942

15957.4

5015.49
514.131

39679.6

690.104

129921

1285.61 1339.84

8047.31

0

20000

40000

60000

80000

100000

120000

140000

1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

(m
s)

Grids

- 35 -

6 0.0055921077728271484 0.004848957061767578 0.005402088165283203
5.28105

7 0.0054819583892822266 0.005773067474365234 0.005354881286621094
5.53664

8 0.0055620670318603516 0.005478858947753906 0.006025075912475586
5.68867

9 0.005601167678833008 0.005458831787109375 0.005386829376220703
5.48228

10 0.005657672882080078 0.0050182342529296875 0.0055391788482666016
5.40503

Figure 5.18: CSP table for easy hyper Sudoku puzzles

Grids Test 1 (s) Test 2 (s) Test 3 (s) Average

(rounded

in ms)

1 0.01194000244140625 0.012660026550292969 0.012367010116577148
12.3223

2 0.006752967834472656 0.0064220428466796875 0.006289005279541016
6.48801

3 0.0542597770690918 0.051853179931640625 0.05097079277038574
52.3612

4 0.007296085357666016 0.0076329708099365234 0.0074748992919921875
7.46799

5 0.012808084487915039 0.013007164001464844 0.011523008346557617
12.4461

6 0.01134490966796875 0.011215925216674805 0.011272907257080078
11.2779

7 0.008751869201660156 0.010045051574707031 0.008953094482421875
9.25001

8 0.0061070919036865234 0.0061299800872802734 0.006109952926635742
6.11567

9 0.02385711669921875 0.023035287857055664 0.02202606201171875
22.9728

10 0.01013803482055664 0.009792089462280273 0.00984811782836914
9.92608

Figure 5.19: CSP table for hard hyper Sudoku puzzles

- 36 -

Figure 5.20: Average CSP time for easy Figure 5.21: Average CSP time for hard

Average time used to solve easy hyper Sudokus with algorithm CSP is very stable, it always

gets the solution between 5 and 6 ms. This stability can be explained by the fact that the grid

is expressed in a CSP problem, therefore there is no direct relation between Sudoku

difficulty and CSP difficulty. Average time for hard puzzles ranges from 6 ms to 52 ms,

compared to backtracking, this average time can be called stable too.

5.4.3 Overall Analysis for Hyper Sudokus

Overall, for both easy and hard Hyper Sudokus, CSP has the best performance with around

5.5 ms average for easy puzzles and around 15.1 ms for hard puzzles. Backtracking on the

other hand has around 12ms average for easy puzzles and an astronomical around 20279

ms (around 20 seconds average) for hard puzzles, this is due to the higher number of

constraints that forces the algorithm to backtrack more often to satisfy all the constraints.

CSP is not that much impacted because it has a heuristic search function which makes the

method more intelligent. The environment of the CSP is also simpler as it works with sets.

5

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

(m
s)

Grids

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

(m
s)

Grids

- 37 -

Figure 5.22: Average time for all algorithms for Hyper Sudokus

12.4586 5.521171

20279.2

15.0628
0

5000

10000

15000

20000

25000

Backtracking CSP

A
ve

ra
ge

 t
im

e
 (

m
s)

Algorithms

easy

hard

- 38 -

CHAPTER 6 Legal, Social, Ethical and Professional Issues

3.1 Legal issues

In this project, there are no major legal issues. Minor legal issues are addressed, as

modification and inclusion of other’s source code are correctly referenced in the source code

and the report. The use of data is also referenced in the report. All of these are assured to

be open source and licensed under GNU General Public License or allow free non-

commercial use.

3.2 Social issues

Creating a solver to solve sudokus and its variants has no social implication, therefore there

are no related social issues.

3.3 Ethical issues

No ethical issues arose during the development of this project. The solver may be used to

cheat in competition for example, but it is very unlikely as the results of this project are not

revolutionary.

3.4 Professional issues

No external client or any other shareholder is needed for this project, and only one person

developed it. Use of other’s work is correctly referenced and assured to be open source.

Testing was made by hand. Back-ups of the source code are stored on a GitLab repository

and local computer.

- 39 -

CHAPTER 7 Conclusion

7.1 Summary

This project aimed to create a solver that can solve Sudoku puzzles and its variants using

different AI algorithms, and also compare the performance of these algorithms. The aim has

been achieved to some extent. A solver has been created, with the ability to solve standard

Sudoku puzzles with 3 different AI algorithms: Backtracking, Constraint Programming and

Exact Cover. It can also solve Sudoku variant Hyper Sudoku with 2 different AI algorithms:

Backtracking and Constraint Programming. When displaying a solution, the solver also

shows the time used to solve the puzzle, thus letting the user compare performances

between different algorithms.

Some of the objectives from section 1.1 Project aim and objectives were abandoned due to

a poor time management. Features such as the solving of the Sudoku variant Mini Sudoku,

or solving of Hyper Sudoku with the exact cover algorithm were not implemented. The

project instead focused on improving and testing existing features.

Overall, the project’s main goal is achieved, but the solver does not have as many

functionalities as wanted at the start of the project.

7.2 Future work

As mentioned in the previous section, many functionalities ideas were abandoned due to

lack of time, and these features could be implemented in the future. Many improvements can

be made to upgrade the solver.

First, the implementation of the exact cover algorithm, that can solve Hyper Sudokus, can

complete the solver. Implementation of the already working algorithms that can solve more

Sudoku variants, such as Mini Sudokus, Killer Sudokus or Twin Sudokus, can be very

interesting.

Next, improvements in the command line interface can be made. Features such as return to

the previous menu, or switching to another txt file when all puzzles in the current txt file are

solved, can be implemented. All these features do not exist in the current version of the

solver and if implemented, it will provide a better user comfort.

Finally, more AI algorithms can be implemented, such as stochastic optimization using

different search techniques as mentioned in section 3.2.4 Other algorithms.

- 40 -

7.3 Personal Reflection

Due to a lack of experience and knowledge about individual large-scale project planning,

development was poorly executed in semester 2. The initial plan was to start developing

software either in January or February, but due to the current situation with COVID-19 and

personal matters, development only started in March, which resulted in unfinished

objectives. Luckily, the main goal has been achieved and I’m satisfied with the current

solver.

Through this project, I have discovered new AI algorithms, and the use of different methods

to solve Sudoku puzzles was very exciting. Surprisingly, I did not know that some algorithm

like backtracking was that easy to implement and that it can solve that many Sudoku

puzzles. Reading through some research papers talking about different AI algorithms, I

found them very overwhelming as many methods explained are very difficult to understand

and to implement, whereas other research papers were very interesting, and I found myself

often surprised by the ingenuity of the author. While implementing CSP and exact cover

algorithms using Python, I have strengthened my Python coding skill and learned how to use

the dictionary structure.

Another thing I learned in this project, is to spread the workload equally, setting objectives

with planning, and respecting that planning, are all essential parts to accomplish a good

project. Finding motivation while being lockdown due to the current pandemic was very

challenging, but yet, the sensation to have achieved some goals remains very joyful.

Keeping that will of completing goals is key to find motivation. Aside from working, taking

reasonable time to relax and rest is primordial and makes us even more productive. When

facing difficulties such as bugs, dealing with the frustration can be very hard, therefore being

patient and calm is very important to overcome these challenges.

To conclude, I am happy with the current project, although it still has many things to improve.

And I am satisfied with all the experiences I have gained.

- 41 -

List of References

[1]. History of Sudoku:

https://sudoku.com/how-to-play/the-history-of-sudoku/

[2]. Standard Sudoku puzzle example:

https://www.sudoku.ws/standard-1.htm

[3]. Hyper Sudoku puzzle example:

https://www.educmat.fr/categories/jeux_reflexion/fiches_jeux/hypersudoku/index.php

[4]. Mini Sudoku puzzle example:

https://sudoku.cool/mini-sudoku.php

[5]. Dhanya Job and Varghese Paul. Recursive Backtracking for Solving 9*9 Sudoku

Puzzle. Bonfring International Journal of Data Mining, 2016, Vol.6, No.1

[6]. Backtracking algorithm on a Sudoku puzzle:

https://upload.wikimedia.org/wikipedia/commons/8/8c/Sudoku_solved_by_bactrackin

g.gif

[7]. Jyoti, Tarun Dalal. Constraint Satisfaction Problem: A case study. International

Journal of Computer Science and Mobile Computing, 2015, Vol.4

[8]. Helmut Simonis. Sudoku as a Constraint Problem. CP Workshop on modelling

and reformulating Constraint Satisfaction Problems, 2005, Vol.12

[9]. Exact Cover Problem:

 https://www.geeksforgeeks.org/exact-cover-problem-algorithm-x-set-1/

[10]. The 729 x 324 matrix for a standard Sudoku puzzle.

https://www.stolaf.edu/people/hansonr/sudoku/exactcovermatrix.htm

[11]. Donald E. Knuth. Dancing Links, 2000

%20
https://sudoku.com/how
https://sudoku.com/how-to-play/the-history-of-sudoku/
https://sudoku.com/how-to-play/the-history-of-sudoku/
https://sudoku.com/how-to-play/the-history-of-sudoku/
https://sudoku.com/how-to-play/the-history-of-sudoku/
https://sudoku.com/how-to-play/the-history-of-sudoku/
https://sudoku.com/how-to-play/the-history-of-sudoku/
https://sudoku.com/how-to-play/the-history-of-sudoku/
https://sudoku.com/how-to-play/the-history-of-sudoku/
https://sudoku.com/how-to-play/the-history-of-sudoku/
https://sudoku.com/how-to-play/the-history-of-sudoku/
https://sudoku.com/how-to-play/the-history-of-sudoku/
%20
https://www.sudoku.ws/standard
https://www.sudoku.ws/standard-1.htm
https://www.sudoku.ws/standard-1.htm
https://www.sudoku.ws/standard-1.htm
https://www.educmat.fr/categories/jeux_reflexion/fiches_jeux/hypersudoku/index.php
https://www.educmat.fr/categories/jeux_reflexion/fiches_jeux/hypersudoku/index.php
https://www.educmat.fr/categories/jeux_reflexion/fiches_jeux/hypersudoku/index.php
https://sudoku.cool/mini
https://sudoku.cool/mini-sudoku.php
https://sudoku.cool/mini-sudoku.php
https://sudoku.cool/mini-sudoku.php
https://upload.wikimedia.org/wikipedia/commons/8/8c/Sudoku_solved_by_bactracking.gif
https://upload.wikimedia.org/wikipedia/commons/8/8c/Sudoku_solved_by_bactracking.gif
%20
https://www.geeksforgeeks.org/exact-cover-problem-algorithm-x-set-1/
https://www.geeksforgeeks.org/exact-cover-problem-algorithm-x-set-1/
https://www.geeksforgeeks.org/exact-cover-problem-algorithm-x-set-1/
https://www.geeksforgeeks.org/exact-cover-problem-algorithm-x-set-1/
https://www.geeksforgeeks.org/exact-cover-problem-algorithm-x-set-1/
https://www.geeksforgeeks.org/exact-cover-problem-algorithm-x-set-1/
https://www.geeksforgeeks.org/exact-cover-problem-algorithm-x-set-1/
https://www.geeksforgeeks.org/exact-cover-problem-algorithm-x-set-1/
https://www.geeksforgeeks.org/exact-cover-problem-algorithm-x-set-1/
https://www.geeksforgeeks.org/exact-cover-problem-algorithm-x-set-1/
https://www.geeksforgeeks.org/exact-cover-problem-algorithm-x-set-1/
https://www.geeksforgeeks.org/exact-cover-problem-algorithm-x-set-1/
https://www.geeksforgeeks.org/exact-cover-problem-algorithm-x-set-1/
https://www.geeksforgeeks.org/exact-cover-problem-algorithm-x-set-1/
https://www.stolaf.edu/people/hansonr/sudoku/exactcovermatrix.htm

- 42 -

[12]. Meir Perez, Tshilidzi Marwala. Stochastic Optimization Approaches for

Solving Sudoku, 2008

[13]. Standard Sudoku puzzles:

https://sudoku.com

[14]. Hyper Sudoku puzzles:

https://www.e-sudoku.fr/windoku.php

[15]. Peter Norvig’s python Sudoku solver:

http://norvig.com/sudoku.html

[16]. Ali Assaf’s algorithm X:

https://www.cs.mcgill.ca/~aassaf9/python/algorithm_x.html

[17]. GNU General Public License:

https://snyk.io/learn/what-is-gpl-license-gplv3-explained/

https://sudoku.com/
https://www.e-sudoku.fr/windoku.php
http://norvig.com/sudoku.html
https://www.cs.mcgill.ca/~aassaf9/python/algorithm_x.html
https://snyk.io/learn/what-is-gpl-license-gplv3-explained/

- 43 -

Appendix A

External Materials

Software Tools

The software used for development of source code :

• Atom

- 44 -

Appendix B

Project Code

Source Code

The GitLab repository for source code:

https://gitlab.com/sc18s3h/fyp

https://gitlab.com/sc18s3h/fyp

	Summary
	Acknowledgements
	Table of Contents
	Chapter 1 Introduction
	1.1 Project aim and objectives
	1.2 Deliverables

	Chapter 2 Project planning and management
	2.1 Initial plan
	2.2 Changes in project aims and objectives
	2.3 Project methodology and risk mitigation
	2.4 Version Control

	Chapter 3 Background Research
	3.1 Sudoku Puzzles
	3.1.1 History of Sudoku
	3.1.2 Standard Sudoku Puzzle
	3.1.3 Hyper Sudoku
	3.1.4 Mini Sudoku

	3.2 AI algorithms
	3.2.1 Backtracking
	3.2.2 Constraint Programming
	3.2.3 Exact Cover
	3.2.4 Other algorithms

	CHAPTER 4 Design and Implementation
	4.1 Programming Language
	4.2 Code Repository
	4.3 Code Structure
	4.4 Implementation
	4.4.1 Backtracking
	4.4.2 Constraint Satisfaction Problem
	4.4.3 Exact Cover
	4.4.4 Hyper Sudoku variants
	4.4.5 Command-Line Interface

	CHAPTER 5 Testing and Analysis
	5.1 Testing
	5.2 Hardware Resources
	5.3 Analysis for standard Sudokus
	5.3.1 Backtracking
	5.3.2 Constraint Programming
	5.3.3 Exact Cover
	5.3.4 Overall Analysis for Standard Sudokus

	5.4 Analysis of Hyper Sudokus
	5.4.1 Backtracking for Hyper Sudoku
	5.4.2 CSP for Hyper Sudoku
	5.4.3 Overall Analysis for Hyper Sudokus

	CHAPTER 6 Legal, Social, Ethical and Professional Issues
	3.1 Legal issues
	3.2 Social issues
	3.3 Ethical issues
	3.4 Professional issues

	CHAPTER 7 Conclusion
	7.1 Summary
	7.2 Future work
	7.3 Personal Reflection

	List of References
	Appendix A External Materials
	Software Tools

	Appendix B
	Source Code

